Home
Class 12
MATHS
The complex number z=(i-1)/(cos((pi)/(3)...

The complex number `z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3)))` is equal to :

A

`sqrt(2)i(cos(5 pi)/(12)-i sin(5 pi)/(12))`

B

`cos(pi)/(12)-i sin(pi)/(12)`

C

`sqrt(2)(cos(pi)/(12)+i sin(pi)/(12))`

D

`sqrt(2)(cos(5 pi)/(12)+i sin(5 pi)/(12))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the complex number \( z = \frac{i - 1}{\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)} \). ### Step 1: Evaluate the denominator First, we evaluate the trigonometric functions in the denominator: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, the denominator becomes: \[ \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i \frac{\sqrt{3}}{2} \] ### Step 2: Rewrite the complex number Now we can rewrite \( z \): \[ z = \frac{i - 1}{\frac{1}{2} + i \frac{\sqrt{3}}{2}} \] ### Step 3: Rationalize the denominator To simplify \( z \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(i - 1) \left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)} \] ### Step 4: Calculate the denominator Calculating the denominator: \[ \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] So the denominator simplifies to 1. ### Step 5: Expand the numerator Now we expand the numerator: \[ (i - 1) \left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) = \frac{1}{2}i - \frac{1}{2} - i \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \] Combining like terms: \[ = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)i \] ### Step 6: Write in standard form Thus, we have: \[ z = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)i \] ### Step 7: Find the modulus and argument Now we can express \( z \) in polar form. The modulus \( r \) is given by: \[ r = \sqrt{\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)^2} \] The argument \( \theta \) can be found using: \[ \tan(\theta) = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} \] ### Step 8: Simplify to find \( \theta \) Calculating this gives: \[ \tan(\theta) = \frac{\frac{1 - \sqrt{3}}{2}}{\frac{1 + \sqrt{3}}{2}} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \] This simplifies to \( \tan\left(\frac{5\pi}{12}\right) \). ### Final Answer Thus, the value of \( z \) is: \[ \theta = \frac{5\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Convert the complex number 3(cos(5(pi)/(3))-i sin((pi)/(6))) into polar form.

Let omega be the complex number cos((2 pi)/(3))+i sin((2 pi)/(3))* Then the number of distinct complex cos numbers z satisfying Delta=det[[omega,z+omega^(2),1omega,z+omega^(2),1omega^(2),1,z+omega]]=0 is

If z=1+cos((pi)/(5))+i sin((pi)/(5)) then sin(argz) is equal to

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

If z=cos((pi)/(4))+i sin((pi)/(6)), then

Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3)) in polar form.

The principal value of the arg(z) and lzl of the complex number z=1+cos((11 pi)/(9))+i sin((11 pi)/(9)) are respectively

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let f:R-{2,6} rarr R be real valued function defined as f(x)=(x^(2)+2x...

    Text Solution

    |

  2. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  3. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  4. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  5. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  6. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  7. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  8. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  9. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  10. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  11. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |

  12. If the constant term in the binomial expansion of ((x^(5/2))/(2)-(4)/(...

    Text Solution

    |

  13. Let the area of the region {(x,y):abs(2x-1)leyleabs(x^(2)-x),0lexle1} ...

    Text Solution

    |

  14. Let A be a n times n matrix such that abs(A)=2.If the determinant of t...

    Text Solution

    |

  15. The sum 1^(2)-2.3^(2)+3.5^(2)-4.7^(2)+5.9^(2)- . . . +15.29^(2) is

    Text Solution

    |

  16. If "^(2n+1)P(n-1):^(2n-1)P(n)=11:21,then n^(2)+n+15 is equal to :

    Text Solution

    |

  17. Let S be the set of all a in N such that the area of the triangle form...

    Text Solution

    |

  18. Let the tangents at the points A(4,-11) and B(8,-5) on the circle x^(2...

    Text Solution

    |

  19. Three rotten apples are mixed accidently with seven good apples and fo...

    Text Solution

    |

  20. Let A={(x,y)in R^(2):yge0,2xleylesqrt(4-(x-1)^(2)}) and B={(x,y)in R t...

    Text Solution

    |