Home
Class 12
MATHS
f a point P(alpha,beta,gamma) satisfying...

f a point `P(alpha,beta,gamma)` satisfying `(alpha,beta,gamma)((2,10,8),(9,3,8),(8,4,8))=(0,0,0)` lies on the plane `2x+4y+3z=5,` then `6 alpha+9 beta+7 gamma` is equal to

A

`(5)/(4)`

B

`-1`

C

`11`

D

`(11)/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(6\alpha + 9\beta + 7\gamma\) given the conditions provided. Let's break down the solution step by step. ### Step 1: Set up the equations We are given the point \(P(\alpha, \beta, \gamma)\) that satisfies the following matrix equation: \[ (\alpha, \beta, \gamma) \begin{pmatrix} 2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8 \end{pmatrix} = (0, 0, 0) \] This implies that: 1. \(2\alpha + 10\beta + 8\gamma = 0\) (Equation 1) 2. \(9\alpha + 3\beta + 8\gamma = 0\) (Equation 2) 3. \(8\alpha + 4\beta + 8\gamma = 0\) (Equation 3) Additionally, the point lies on the plane defined by: \[ 2x + 4y + 3z = 5 \] Substituting \(x = \alpha\), \(y = \beta\), and \(z = \gamma\), we have: \[ 2\alpha + 4\beta + 3\gamma = 5 \quad \text{(Equation 4)} \] ### Step 2: Solve the system of equations Now we have four equations: 1. \(2\alpha + 10\beta + 8\gamma = 0\) 2. \(9\alpha + 3\beta + 8\gamma = 0\) 3. \(8\alpha + 4\beta + 8\gamma = 0\) 4. \(2\alpha + 4\beta + 3\gamma = 5\) From Equation 1, we can express \(\gamma\) in terms of \(\alpha\) and \(\beta\): \[ 8\gamma = -2\alpha - 10\beta \implies \gamma = -\frac{1}{4}\alpha - \frac{5}{4}\beta \quad \text{(Equation 5)} \] ### Step 3: Substitute \(\gamma\) in other equations Substituting Equation 5 into Equations 2 and 3: **For Equation 2:** \[ 9\alpha + 3\beta + 8\left(-\frac{1}{4}\alpha - \frac{5}{4}\beta\right) = 0 \] \[ 9\alpha + 3\beta - 2\alpha - 10\beta = 0 \] \[ 7\alpha - 7\beta = 0 \implies \alpha = \beta \quad \text{(Equation 6)} \] **For Equation 3:** \[ 8\alpha + 4\beta + 8\left(-\frac{1}{4}\alpha - \frac{5}{4}\beta\right) = 0 \] \[ 8\alpha + 4\beta - 2\alpha - 10\beta = 0 \] \[ 6\alpha - 6\beta = 0 \implies \alpha = \beta \quad \text{(consistent with Equation 6)} \] ### Step 4: Substitute \(\beta\) in terms of \(\alpha\) Now, substituting \(\beta = \alpha\) into Equation 5: \[ \gamma = -\frac{1}{4}\alpha - \frac{5}{4}\alpha = -\frac{6}{4}\alpha = -\frac{3}{2}\alpha \quad \text{(Equation 7)} \] ### Step 5: Substitute into Equation 4 Now substitute \(\beta\) and \(\gamma\) into Equation 4: \[ 2\alpha + 4\alpha + 3\left(-\frac{3}{2}\alpha\right) = 5 \] \[ 2\alpha + 4\alpha - \frac{9}{2}\alpha = 5 \] \[ \left(6 - \frac{9}{2}\right)\alpha = 5 \] \[ \frac{12 - 9}{2}\alpha = 5 \implies \frac{3}{2}\alpha = 5 \implies \alpha = \frac{10}{3} \] ### Step 6: Find \(\beta\) and \(\gamma\) Using \(\alpha = \frac{10}{3}\): \[ \beta = \alpha = \frac{10}{3} \] \[ \gamma = -\frac{3}{2}\alpha = -\frac{3}{2} \cdot \frac{10}{3} = -5 \] ### Step 7: Calculate \(6\alpha + 9\beta + 7\gamma\) Now we calculate \(6\alpha + 9\beta + 7\gamma\): \[ 6\alpha + 9\beta + 7\gamma = 6\left(\frac{10}{3}\right) + 9\left(\frac{10}{3}\right) + 7(-5) \] \[ = \frac{60}{3} + \frac{90}{3} - 35 = 20 + 30 - 35 = 15 \] Thus, the final answer is: \[ \boxed{15} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta, gamma be three real numbers satisfying [(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)] . If the point A(alpha, beta, gamma) lies on the plane 2x+y+3z=2 , then 3alpha+3beta-6gamma is equal to

Suppose (alpha,beta,gamma) lie on the plane 2x+y+z=1 and [alpha,beta,gamma][(1,9,1),(7,2,1),(8,3,1)]=[0,0,0] then alpha +beta^(2)+gamma^(2) = _____

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Let (alpha,beta,gamma) be the mirror image of the point (2,3,5) in the line (x-1)/(2)=(y-2)/(3)=(z-3)/(4) .Then, 2 alpha+3 beta+4 gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

For real numbers alpha and beta ne 0 , if the point of intersection of the straight lines ( x - alpha)/( 1) = ( y - 1)/( 2) = ( z -1)/( 3) and ( x - 4) / ( beta) = ( y - 6)/( 3) = ( z - 7)/(3) , lies on the plane x + 2y - z = 8 then alpha - beta is equal to

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  2. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  3. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  4. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  5. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  6. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  7. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  8. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  9. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  10. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |

  11. If the constant term in the binomial expansion of ((x^(5/2))/(2)-(4)/(...

    Text Solution

    |

  12. Let the area of the region {(x,y):abs(2x-1)leyleabs(x^(2)-x),0lexle1} ...

    Text Solution

    |

  13. Let A be a n times n matrix such that abs(A)=2.If the determinant of t...

    Text Solution

    |

  14. The sum 1^(2)-2.3^(2)+3.5^(2)-4.7^(2)+5.9^(2)- . . . +15.29^(2) is

    Text Solution

    |

  15. If "^(2n+1)P(n-1):^(2n-1)P(n)=11:21,then n^(2)+n+15 is equal to :

    Text Solution

    |

  16. Let S be the set of all a in N such that the area of the triangle form...

    Text Solution

    |

  17. Let the tangents at the points A(4,-11) and B(8,-5) on the circle x^(2...

    Text Solution

    |

  18. Three rotten apples are mixed accidently with seven good apples and fo...

    Text Solution

    |

  19. Let A={(x,y)in R^(2):yge0,2xleylesqrt(4-(x-1)^(2)}) and B={(x,y)in R t...

    Text Solution

    |

  20. Let lambda != 0 be a real number.Let alpha,beta be the roots of the eq...

    Text Solution

    |