Home
Class 12
MATHS
Let vec a=hat i+2hat j+3hat k,vec b=hat ...

Let `vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k` and `vec c=5hat i-3hat j+3hat k`,be there(three) vector.If `vec r` is a vector such that, `vec r times vec b=vec c times vec b` and `vec r .(vec a)=0,` then `25 abs(vec r)^(2)` is equal to

A

`560`

B

`339`

C

`449`

D

`336`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{r}\) that satisfies the conditions given in the question. Let's break down the solution step by step. ### Step 1: Understand the conditions We have: 1. \(\vec{r} \times \vec{b} = \vec{c} \times \vec{b}\) 2. \(\vec{r} \cdot \vec{a} = 0\) Where: \[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = 5\hat{i} - 3\hat{j} + 3\hat{k} \] ### Step 2: Calculate \(\vec{c} \times \vec{b}\) First, we need to compute \(\vec{c} \times \vec{b}\): \[ \vec{c} = \begin{pmatrix} 5 \\ -3 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \] Using the determinant to find the cross product: \[ \vec{c} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -3 & 3 \\ 1 & -1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-3)(2) - (3)(-1)) - \hat{j}((5)(2) - (3)(1)) + \hat{k}((5)(-1) - (-3)(1)) \] \[ = \hat{i}(-6 + 3) - \hat{j}(10 - 3) + \hat{k}(-5 + 3) \] \[ = \hat{i}(-3) - \hat{j}(7) + \hat{k}(-2) \] \[ = -3\hat{i} - 7\hat{j} - 2\hat{k} \] ### Step 3: Set up the equation for \(\vec{r}\) From the first condition, we have: \[ \vec{r} \times \vec{b} = -3\hat{i} - 7\hat{j} - 2\hat{k} \] ### Step 4: Express \(\vec{r}\) in terms of a scalar multiple Let \(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}\). Then: \[ \vec{r} \times \vec{b} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \] Calculating this cross product: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & -1 & 2 \end{vmatrix} \] \[ = \hat{i}(y \cdot 2 - z \cdot (-1)) - \hat{j}(x \cdot 2 - z \cdot 1) + \hat{k}(x \cdot (-1) - y \cdot 1) \] \[ = (2y + z)\hat{i} - (2x - z)\hat{j} + (-x - y)\hat{k} \] Setting this equal to \(-3\hat{i} - 7\hat{j} - 2\hat{k}\), we get the following equations: 1. \(2y + z = -3\) 2. \(2x - z = 7\) 3. \(-x - y = -2\) ### Step 5: Solve the system of equations From equation 3: \[ x + y = 2 \quad \Rightarrow \quad y = 2 - x \] Substituting \(y\) in equations 1 and 2: 1. \(2(2 - x) + z = -3\) \(\Rightarrow 4 - 2x + z = -3\) \(\Rightarrow z = -7 + 2x\) 2. \(2x - z = 7\) \(\Rightarrow 2x - (-7 + 2x) = 7\) \(\Rightarrow 2x + 7 - 2x = 7\) \(\Rightarrow 7 = 7\) (always true) Now substituting \(z\) into \(2y + z = -3\): \[ 2(2 - x) + (-7 + 2x) = -3 \] \[ 4 - 2x - 7 + 2x = -3 \quad \Rightarrow \quad -3 = -3 \quad \text{(always true)} \] ### Step 6: Choose a value for \(x\) Let’s choose \(x = 0\): \[ y = 2 - 0 = 2, \quad z = -7 + 2(0) = -7 \] Thus, \(\vec{r} = 0\hat{i} + 2\hat{j} - 7\hat{k}\). ### Step 7: Calculate \(|\vec{r}|^2\) \[ |\vec{r}|^2 = 0^2 + 2^2 + (-7)^2 = 0 + 4 + 49 = 53 \] ### Step 8: Calculate \(25 |\vec{r}|^2\) \[ 25 |\vec{r}|^2 = 25 \times 53 = 1325 \] ### Final Answer Thus, \(25 |\vec{r}|^2 = 1325\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If vec a=hat i+2hat j-2hat k,vec b=2hat i-hat j+hat k and vec c=hat i+3hat j-hat k then find vec a xx(vec b xxvec c)

If vec a=hat i-2hat j+hat k,vec b=2hat i+hat j-hat k and vec C=3hat i+5hat j+2hat k then find the value of vec a xx(vec b xxvec c)

If vec a=2hat i+2hat j-3hat k,vec b=hat i-2hat j+2hat k,vec c=4hat i+3hat j+3hat k then find the value of |vec a+2vec b+2vec c|

vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k,f in d|3vec a-2vec b+4vec c|

If quad vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k find |3vec a-2vec b+4vec c|

1fvec a=(hat i-3hat j-5hat k),vec b=(-3hat i+2hat j+7hat k),vec c=(2hat i-hat j+hat k) then find (vec a+vec b+vec c)

vec a=hat i+hat j+hat k,vec b=2hat i-hat j+3hat k and vec c=hat i-2hat j+hat k find a unit vector in a direction parallel to vector (2vec a-vec b+3vec c)

If vec A=hat I + 2 hat j -3 hat k , vec B =2 hat I -hat j + hat k and vec Chat I -3 hat j + 2 hat k , then find vec A xx ( vec B xx vec C).

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot

If vec a=3hat i-2hat j+hat k and vec b=-hat i+hat j+hat k then the unit vector parallel to vec a+vec b, is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  2. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  3. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  4. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  5. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  6. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  7. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  8. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |

  9. If the constant term in the binomial expansion of ((x^(5/2))/(2)-(4)/(...

    Text Solution

    |

  10. Let the area of the region {(x,y):abs(2x-1)leyleabs(x^(2)-x),0lexle1} ...

    Text Solution

    |

  11. Let A be a n times n matrix such that abs(A)=2.If the determinant of t...

    Text Solution

    |

  12. The sum 1^(2)-2.3^(2)+3.5^(2)-4.7^(2)+5.9^(2)- . . . +15.29^(2) is

    Text Solution

    |

  13. If "^(2n+1)P(n-1):^(2n-1)P(n)=11:21,then n^(2)+n+15 is equal to :

    Text Solution

    |

  14. Let S be the set of all a in N such that the area of the triangle form...

    Text Solution

    |

  15. Let the tangents at the points A(4,-11) and B(8,-5) on the circle x^(2...

    Text Solution

    |

  16. Three rotten apples are mixed accidently with seven good apples and fo...

    Text Solution

    |

  17. Let A={(x,y)in R^(2):yge0,2xleylesqrt(4-(x-1)^(2)}) and B={(x,y)in R t...

    Text Solution

    |

  18. Let lambda != 0 be a real number.Let alpha,beta be the roots of the eq...

    Text Solution

    |

  19. Let y=f(x) be the solution of the differential equation y(x+1)dx-x^(2)...

    Text Solution

    |

  20. Let [x] denote the greatest integer lex.Consider the function f(x)=max...

    Text Solution

    |