Home
Class 12
MATHS
Let lambda != 0 be a real number.Let alp...

Let `lambda != 0` be a real number.Let `alpha,beta` be the roots of the equation `14x^(2)-31x+3 lambda=0` and `alpha,gamma` be the roots of the equation `35x^(2)-53x+4 lambda=0`.Then `(3 alpha)/(beta)` and `(4 alpha)/(gamma)` are the roots of the equation

A

`7x^(2)+245x-250=0`

B

`49x^(2)+245x+250=0`

C

`49x^(2)-245x+250=0`

D

`7x^(2)-245x+250=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the roots of the equations given and then derive a new equation based on the specified transformations of the roots. Let's break it down step by step. ### Step 1: Identify the roots of the first equation The first equation is given by: \[ 14x^2 - 31x + 3\lambda = 0 \] Using Vieta's formulas, we can find: - The sum of the roots (\(\alpha + \beta\)): \[ \alpha + \beta = \frac{31}{14} \] - The product of the roots (\(\alpha \beta\)): \[ \alpha \beta = \frac{3\lambda}{14} \] ### Step 2: Identify the roots of the second equation The second equation is given by: \[ 35x^2 - 53x + 4\lambda = 0 \] Again, using Vieta's formulas: - The sum of the roots (\(\alpha + \gamma\)): \[ \alpha + \gamma = \frac{53}{35} \] - The product of the roots (\(\alpha \gamma\)): \[ \alpha \gamma = \frac{4\lambda}{35} \] ### Step 3: Find the ratio of \(\beta\) and \(\gamma\) To find the ratio \(\frac{\beta}{\gamma}\), we can use the products of the roots from the two equations: \[ \frac{\alpha \beta}{\alpha \gamma} = \frac{\frac{3\lambda}{14}}{\frac{4\lambda}{35}} = \frac{3 \cdot 35}{4 \cdot 14} = \frac{105}{56} = \frac{15}{8} \] Thus, we have: \[ \frac{\beta}{\gamma} = \frac{15}{8} \] ### Step 4: Find \(\beta - \gamma\) Now, we can find \(\beta - \gamma\) using the sums of the roots: \[ \beta - \gamma = (\alpha + \beta) - (\alpha + \gamma) = \frac{31}{14} - \frac{53}{35} \] Finding a common denominator (which is 70): \[ \beta - \gamma = \frac{31 \cdot 5}{70} - \frac{53 \cdot 2}{70} = \frac{155 - 106}{70} = \frac{49}{70} = \frac{7}{10} \] ### Step 5: Solve for \(\beta\) and \(\gamma\) Let’s denote \(\beta = 15k\) and \(\gamma = 8k\) for some \(k\). From \(\beta - \gamma = \frac{7}{10}\): \[ 15k - 8k = \frac{7}{10} \implies 7k = \frac{7}{10} \implies k = \frac{1}{10} \] Thus: \[ \beta = 15 \cdot \frac{1}{10} = \frac{3}{2}, \quad \gamma = 8 \cdot \frac{1}{10} = \frac{4}{5} \] ### Step 6: Find \(\alpha\) Using \(\alpha + \beta = \frac{31}{14}\): \[ \alpha + \frac{3}{2} = \frac{31}{14} \implies \alpha = \frac{31}{14} - \frac{21}{14} = \frac{10}{14} = \frac{5}{7} \] ### Step 7: Form the new roots Now we need to find the new roots: \[ \frac{3\alpha}{\beta} = \frac{3 \cdot \frac{5}{7}}{\frac{3}{2}} = \frac{30}{21} = \frac{10}{7} \] \[ \frac{4\alpha}{\gamma} = \frac{4 \cdot \frac{5}{7}}{\frac{4}{5}} = \frac{20}{7} \cdot \frac{5}{4} = \frac{25}{7} \] ### Step 8: Form the equation with these roots The roots are \(\frac{10}{7}\) and \(\frac{25}{7}\). The sum and product of the roots are: - Sum: \[ \frac{10}{7} + \frac{25}{7} = \frac{35}{7} = 5 \] - Product: \[ \frac{10}{7} \cdot \frac{25}{7} = \frac{250}{49} \] Thus, the equation with roots \(\frac{10}{7}\) and \(\frac{25}{7}\) is: \[ x^2 - 5x + \frac{250}{49} = 0 \] Multiplying through by 49 to eliminate the fraction: \[ 49x^2 - 245x + 250 = 0 \] ### Final Answer The final equation is: \[ 49x^2 - 245x + 250 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta be the roots of the equation 4x^(2)-16x+lambda=0 where lambda in R such that 1

If alpha and beta are the roots of the equation x^(2)+6x+lambda=0 and 3 alpha+2 beta=-20 ,then lambda=

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0 such that alpha+beta=0 then

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

alpha,beta are the roots of the equation x^(2)-4x+lambda=0, and gamma,delta are the roots of the equation x^(2)-64x+mu=0. If alpha,beta,gamma,delta form an increasing G.P,find the values of alpha,beta,gamma,delta

Let alpha,beta be the roots of the equation x^(2)-(2a+1)x+a=0 and gamma,delta be the roots of the equation x^(2)+(a-4)x+a-1=0. If (alpha)/(gamma)-(delta)/(beta)=(alpha delta(alpha-gamma+beta-delta))/(a) then the value of (a-1)^(-2) is

If alpha,beta are the roots of the equation x^(2)+px+1=0 gamma,delta the roots of the equation x^(2)+qx+1=0 then (alpha-gamma)(alpha+delta)(beta-gamma)(beta+delta)=

If alpha,beta,gamma the roots of the equation x^(3)-7x+7=0 then (1)/(alpha^(4))+(1)/(beta^(4))+(1)/(gamma^(4))=

alpha and beta are the roots of the equation x^(2)-3x+a=0 and gamma and delta are the roots of the equation x^(2)-12x+b=0 .If alpha,beta,gamma, and delta form an increasing GP., then (a,b)-

If alpha,beta,gamma,delta are the roots of the equation 3x^(4)-8x^(3)+2x^(2)-9=0 then sum alpha beta=

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Three rotten apples are mixed accidently with seven good apples and fo...

    Text Solution

    |

  2. Let A={(x,y)in R^(2):yge0,2xleylesqrt(4-(x-1)^(2)}) and B={(x,y)in R t...

    Text Solution

    |

  3. Let lambda != 0 be a real number.Let alpha,beta be the roots of the eq...

    Text Solution

    |

  4. Let y=f(x) be the solution of the differential equation y(x+1)dx-x^(2)...

    Text Solution

    |

  5. Let [x] denote the greatest integer lex.Consider the function f(x)=max...

    Text Solution

    |

  6. Let Delta be the area of the region {(x,y)in R^(2):x^(2)+y^(2)le21,y^(...

    Text Solution

    |

  7. Let x=2 be a root of the equation x^(2)+px+q=0 and f(x)={((1-cos(x^(2)...

    Text Solution

    |

  8. A light ray emits from the origin making an angle 30^(@) with the posi...

    Text Solution

    |

  9. Let B and C be the two points on the line y+x=0 such that B and C are ...

    Text Solution

    |

  10. .If p,q and r are three propositions,then which of the following combi...

    Text Solution

    |

  11. Consider the following system of equations alpha x+2y+z=1 2 alpha x+...

    Text Solution

    |

  12. Let f(theta)=3(sin^(4)((3 pi)/(2)-theta)+sin^(4)(3 pi+theta)-2(1-sin^(...

    Text Solution

    |

  13. For two non-zero complex numbers z(1) and z(2),if Re(z(1)z(2))=0 and R...

    Text Solution

    |

  14. Let alpha and beta be real numbers.Consider a 3xx3 matrix A such that ...

    Text Solution

    |

  15. Fifteen football players of a club-team are given 15T -shirts with the...

    Text Solution

    |

  16. Let f:R rarr R be a function such that f(x)=(x^(2)+2x+1)/(x^(2)+1).The...

    Text Solution

    |

  17. If the vectors vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2...

    Text Solution

    |

  18. .Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R be a functio...

    Text Solution

    |

  19. The domain of f(x)=(log(x+1)(x-2))/(e^(2log x)-(2x+3)),x in R is

    Text Solution

    |

  20. .Let a(1),a(2),a(3).... be a GP of increasing positive numbers.If the ...

    Text Solution

    |