Home
Class 12
MATHS
Let [x] denote the greatest integer lex....

Let `[x]` denote the greatest integer `lex`.Consider the function `f(x)=max{x^(2),1+[x]}`.Then the value of the integral `int_(0)^(2)f(x)(dx` is

A

`(5+4sqrt(2))/(3)`

B

`(8+4sqrt(2))/(3)`

C

`(1+5sqrt(2))/(3)`

D

`(4+5sqrt(2))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} f(x) \, dx \) where \( f(x) = \max\{x^2, 1 + [x]\} \), we first need to analyze the function \( f(x) \) over the interval from \( 0 \) to \( 2 \). ### Step 1: Determine \( f(x) \) in the interval \( [0, 1) \) In the interval \( [0, 1) \): - The greatest integer function \( [x] = 0 \). - Thus, \( 1 + [x] = 1 + 0 = 1 \). - Therefore, \( f(x) = \max\{x^2, 1\} \). Since \( x^2 \) ranges from \( 0 \) to \( 1 \) in this interval, we have: - For \( 0 \leq x < 1 \), \( f(x) = 1 \). ### Step 2: Determine \( f(x) \) in the interval \( [1, 2) \) In the interval \( [1, 2) \): - The greatest integer function \( [x] = 1 \). - Thus, \( 1 + [x] = 1 + 1 = 2 \). - Therefore, \( f(x) = \max\{x^2, 2\} \). Now, we need to find where \( x^2 \) intersects \( 2 \): - The equation \( x^2 = 2 \) gives \( x = \sqrt{2} \). - For \( 1 \leq x < \sqrt{2} \), \( x^2 < 2 \) so \( f(x) = 2 \). - For \( \sqrt{2} \leq x < 2 \), \( x^2 \geq 2 \) so \( f(x) = x^2 \). ### Step 3: Set up the integral Now we can set up the integral as follows: \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{\sqrt{2}} f(x) \, dx + \int_{\sqrt{2}}^{2} f(x) \, dx \] Calculating each part: 1. **From \( 0 \) to \( 1 \)**: \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} 1 \, dx = [x]_{0}^{1} = 1 - 0 = 1 \] 2. **From \( 1 \) to \( \sqrt{2} \)**: \[ \int_{1}^{\sqrt{2}} f(x) \, dx = \int_{1}^{\sqrt{2}} 2 \, dx = [2x]_{1}^{\sqrt{2}} = 2\sqrt{2} - 2 \] 3. **From \( \sqrt{2} \) to \( 2 \)**: \[ \int_{\sqrt{2}}^{2} f(x) \, dx = \int_{\sqrt{2}}^{2} x^2 \, dx = \left[\frac{x^3}{3}\right]_{\sqrt{2}}^{2} = \frac{8}{3} - \frac{(\sqrt{2})^3}{3} = \frac{8}{3} - \frac{2\sqrt{2}}{3} \] ### Step 4: Combine the results Now, we can combine all parts: \[ \int_{0}^{2} f(x) \, dx = 1 + (2\sqrt{2} - 2) + \left(\frac{8}{3} - \frac{2\sqrt{2}}{3}\right) \] Combine the constants and the terms involving \( \sqrt{2} \): \[ = 1 - 2 + 2\sqrt{2} + \frac{8}{3} - \frac{2\sqrt{2}}{3} \] \[ = -1 + 2\sqrt{2} + \frac{8}{3} - \frac{2\sqrt{2}}{3} \] \[ = -1 + \left(2 - \frac{2}{3}\right)\sqrt{2} + \frac{8}{3} \] \[ = -1 + \frac{6}{3}\sqrt{2} - \frac{2}{3}\sqrt{2} + \frac{8}{3} \] \[ = -1 + \frac{4\sqrt{2}}{3} + \frac{6}{3} \] \[ = \frac{5}{3} + \frac{4\sqrt{2}}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} f(x) \, dx = \frac{5 + 4\sqrt{2}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

If [x] denotes the greatest integer less than or equal to x, then find the value of the integral int_(0)^(2)x^(2)[x]dx

If f(x)=max{x^(2),(1-x)^(2),(3)/(4)},x in[0,1] then the value of of int_(0)^(1)f(x)dx is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let [1 denote the greatest integet function then the value int_(0)^(1.5)x[x^(2)].dx

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let [x] denote the greatest integer less than or equal to x. Then the value of int_(1)^(2)|2x-[3x]|dx is ______

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let lambda != 0 be a real number.Let alpha,beta be the roots of the eq...

    Text Solution

    |

  2. Let y=f(x) be the solution of the differential equation y(x+1)dx-x^(2)...

    Text Solution

    |

  3. Let [x] denote the greatest integer lex.Consider the function f(x)=max...

    Text Solution

    |

  4. Let Delta be the area of the region {(x,y)in R^(2):x^(2)+y^(2)le21,y^(...

    Text Solution

    |

  5. Let x=2 be a root of the equation x^(2)+px+q=0 and f(x)={((1-cos(x^(2)...

    Text Solution

    |

  6. A light ray emits from the origin making an angle 30^(@) with the posi...

    Text Solution

    |

  7. Let B and C be the two points on the line y+x=0 such that B and C are ...

    Text Solution

    |

  8. .If p,q and r are three propositions,then which of the following combi...

    Text Solution

    |

  9. Consider the following system of equations alpha x+2y+z=1 2 alpha x+...

    Text Solution

    |

  10. Let f(theta)=3(sin^(4)((3 pi)/(2)-theta)+sin^(4)(3 pi+theta)-2(1-sin^(...

    Text Solution

    |

  11. For two non-zero complex numbers z(1) and z(2),if Re(z(1)z(2))=0 and R...

    Text Solution

    |

  12. Let alpha and beta be real numbers.Consider a 3xx3 matrix A such that ...

    Text Solution

    |

  13. Fifteen football players of a club-team are given 15T -shirts with the...

    Text Solution

    |

  14. Let f:R rarr R be a function such that f(x)=(x^(2)+2x+1)/(x^(2)+1).The...

    Text Solution

    |

  15. If the vectors vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2...

    Text Solution

    |

  16. .Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R be a functio...

    Text Solution

    |

  17. The domain of f(x)=(log(x+1)(x-2))/(e^(2log x)-(2x+3)),x in R is

    Text Solution

    |

  18. .Let a(1),a(2),a(3).... be a GP of increasing positive numbers.If the ...

    Text Solution

    |

  19. If the co-efficient of x^(9) in (alphax^(3)+(1)/(beta x))^(11) and the...

    Text Solution

    |

  20. Suppose f is a function satisfying f(x+y)-f(x)+f(y) for all x,y in N a...

    Text Solution

    |