Home
Class 12
MATHS
Let x=2 be a root of the equation x^(2)+...

Let `x=2` be a root of the equation `x^(2)+px+q=0` and `f(x)={((1-cos(x^(2)-4px+q^(2)+8q+16))/((x-2p)^(4)),,xne2p),(0,,x=2p):}` Then `lim_(x rarr2p)[f(x)]`,where [.] denotes greatest integer function, is

A

`2`

B

`1`

C

`-1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given information and compute the limit of the function \( f(x) \) as \( x \) approaches \( 2p \). ### Step 1: Understanding the Function We have the function defined as: \[ f(x) = \frac{1 - \cos(x^2 - 4px + q^2 + 8q + 16)}{(x - 2p)^4}, \quad x \neq 2p \] and \( f(2p) = 0 \). ### Step 2: Finding the Limit We need to compute: \[ \lim_{x \to 2p} f(x) \] This involves substituting \( x = 2p + h \) where \( h \to 0 \): \[ f(2p + h) = \frac{1 - \cos((2p + h)^2 - 4p(2p + h) + q^2 + 8q + 16)}{(h)^4} \] ### Step 3: Simplifying the Argument of Cosine Calculating the expression inside the cosine: \[ (2p + h)^2 = 4p^2 + 4ph + h^2 \] \[ -4p(2p + h) = -8p^2 - 4ph \] Combining these: \[ (2p + h)^2 - 4p(2p + h) = 4p^2 + 4ph + h^2 - 8p^2 - 4ph = -4p^2 + h^2 \] Thus, we have: \[ f(2p + h) = \frac{1 - \cos(-4p^2 + h^2 + q^2 + 8q + 16)}{h^4} \] ### Step 4: Applying the Limit As \( h \to 0 \), the expression \( -4p^2 + h^2 + q^2 + 8q + 16 \) approaches \( -4p^2 + q^2 + 8q + 16 \). We can denote this limit as \( L \): \[ L = -4p^2 + q^2 + 8q + 16 \] Thus: \[ f(2p + h) = \frac{1 - \cos(L)}{h^4} \] ### Step 5: Using Taylor Expansion Using the Taylor expansion for \( \cos \) around 0: \[ 1 - \cos(L) \approx \frac{L^2}{2} \quad \text{for small } L \] So: \[ f(2p + h) \approx \frac{\frac{L^2}{2}}{h^4} \] ### Step 6: Evaluating the Limit As \( h \to 0 \): \[ \lim_{h \to 0} f(2p + h) = \lim_{h \to 0} \frac{\frac{L^2}{2}}{h^4} \] This limit diverges unless \( L = 0 \). If \( L = 0 \), then: \[ L = -4p^2 + q^2 + 8q + 16 = 0 \] ### Step 7: Final Limit Calculation If \( L \neq 0 \), the limit diverges to infinity. If \( L = 0 \), then: \[ \lim_{x \to 2p} f(x) = \infty \] Thus, we need to evaluate: \[ \lim_{x \to 2p} [f(x)] \] ### Step 8: Greatest Integer Function Since \( f(x) \) approaches infinity, the greatest integer function \( [f(x)] \) will also approach infinity. ### Conclusion Thus, the limit we are looking for is: \[ \lim_{x \to 2p} [f(x)] = \infty \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

If difference of roots of the equation x^(2)-px+q=0 is 1, then p^(2)+4q^(2) equals-

If 2+sqrt3 i is a root of the equation x^2+px+q=0 then find p and q

If 2,3 are the roots of the equation 2x^3+px^2-13x+q=0 then (p,q) is

If lim_(x rarr2^(+))2tan^(-1)(x/2)+sin^(-1)((x)/(1+(x^(2))/(4)))=p then value of [p] is (where [.] denotes greatest integer function "

If lim_(x rarr2^(+))2tan^(-1)(x)/(2)+sin^(-1)(x/(1+(x)/(4)))=p then value of [p] is (where [.] denotes greatest integer function)

If lim_(x rarr2^(+))2tan^(-1)(x/2)+sin^(-1)(x/(1+(x^2)/(2)))=p then value of [p] is (where [.] denotes greatest integer function)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let [x] denote the greatest integer lex.Consider the function f(x)=max...

    Text Solution

    |

  2. Let Delta be the area of the region {(x,y)in R^(2):x^(2)+y^(2)le21,y^(...

    Text Solution

    |

  3. Let x=2 be a root of the equation x^(2)+px+q=0 and f(x)={((1-cos(x^(2)...

    Text Solution

    |

  4. A light ray emits from the origin making an angle 30^(@) with the posi...

    Text Solution

    |

  5. Let B and C be the two points on the line y+x=0 such that B and C are ...

    Text Solution

    |

  6. .If p,q and r are three propositions,then which of the following combi...

    Text Solution

    |

  7. Consider the following system of equations alpha x+2y+z=1 2 alpha x+...

    Text Solution

    |

  8. Let f(theta)=3(sin^(4)((3 pi)/(2)-theta)+sin^(4)(3 pi+theta)-2(1-sin^(...

    Text Solution

    |

  9. For two non-zero complex numbers z(1) and z(2),if Re(z(1)z(2))=0 and R...

    Text Solution

    |

  10. Let alpha and beta be real numbers.Consider a 3xx3 matrix A such that ...

    Text Solution

    |

  11. Fifteen football players of a club-team are given 15T -shirts with the...

    Text Solution

    |

  12. Let f:R rarr R be a function such that f(x)=(x^(2)+2x+1)/(x^(2)+1).The...

    Text Solution

    |

  13. If the vectors vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2...

    Text Solution

    |

  14. .Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R be a functio...

    Text Solution

    |

  15. The domain of f(x)=(log(x+1)(x-2))/(e^(2log x)-(2x+3)),x in R is

    Text Solution

    |

  16. .Let a(1),a(2),a(3).... be a GP of increasing positive numbers.If the ...

    Text Solution

    |

  17. If the co-efficient of x^(9) in (alphax^(3)+(1)/(beta x))^(11) and the...

    Text Solution

    |

  18. Suppose f is a function satisfying f(x+y)-f(x)+f(y) for all x,y in N a...

    Text Solution

    |

  19. Let the coefficients of three consecutive terms in the binomial expans...

    Text Solution

    |

  20. Let f:R rarr R be a differentiable function that satisfies the relatio...

    Text Solution

    |