Home
Class 12
MATHS
If the vectors vec a=lambdahat i+muhat j...

If the vectors `vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2hat k,vec c=2hat i+3hat j+hat k` are coplanar and the projection of `vec a` on the vector `vec b` is `sqrt(54)` units,then the sum of all possible values of `lambda+mu` is equal to

A

`18`

B

`6`

C

`24`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Establish the condition for coplanarity The vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar if the determinant of the matrix formed by their components is zero. The vectors are given as: \[ \vec{a} = \lambda \hat{i} + \mu \hat{j} + 4 \hat{k} \] \[ \vec{b} = -2 \hat{i} + 4 \hat{j} - 2 \hat{k} \] \[ \vec{c} = 2 \hat{i} + 3 \hat{j} + 1 \hat{k} \] The determinant can be set up as follows: \[ \begin{vmatrix} \lambda & \mu & 4 \\ -2 & 4 & -2 \\ 2 & 3 & 1 \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant Calculating the determinant: \[ \lambda \begin{vmatrix} 4 & -2 \\ 3 & 1 \end{vmatrix} - \mu \begin{vmatrix} -2 & -2 \\ 2 & 1 \end{vmatrix} + 4 \begin{vmatrix} -2 & 4 \\ 2 & 3 \end{vmatrix} = 0 \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 4 & -2 \\ 3 & 1 \end{vmatrix} = (4)(1) - (-2)(3) = 4 + 6 = 10\) 2. \(\begin{vmatrix} -2 & -2 \\ 2 & 1 \end{vmatrix} = (-2)(1) - (-2)(2) = -2 + 4 = 2\) 3. \(\begin{vmatrix} -2 & 4 \\ 2 & 3 \end{vmatrix} = (-2)(3) - (4)(2) = -6 - 8 = -14\) Substituting these values back into the determinant: \[ \lambda(10) - \mu(2) + 4(-14) = 0 \] \[ 10\lambda - 2\mu - 56 = 0 \] \[ 5\lambda - \mu = 28 \quad \text{(Equation 1)} \] ### Step 3: Use the projection condition The projection of \(\vec{a}\) on \(\vec{b}\) is given as \(\sqrt{54}\). The formula for the projection is: \[ \text{Projection} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] First, calculate \(|\vec{b}|\): \[ |\vec{b}| = \sqrt{(-2)^2 + 4^2 + (-2)^2} = \sqrt{4 + 16 + 4} = \sqrt{24} \] Now, calculate \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = \lambda(-2) + \mu(4) + 4(-2) = -2\lambda + 4\mu - 8 \] Setting up the equation using the projection: \[ \frac{-2\lambda + 4\mu - 8}{\sqrt{24}} = \sqrt{54} \] Cross-multiplying gives: \[ -2\lambda + 4\mu - 8 = \sqrt{54} \cdot \sqrt{24} \] Calculating \(\sqrt{54} \cdot \sqrt{24} = \sqrt{1296} = 36\): \[ -2\lambda + 4\mu - 8 = 36 \] \[ -2\lambda + 4\mu = 44 \quad \text{(Equation 2)} \] ### Step 4: Solve the system of equations Now we have two equations: 1. \(5\lambda - \mu = 28\) 2. \(-2\lambda + 4\mu = 44\) From Equation 1, express \(\mu\): \[ \mu = 5\lambda - 28 \] Substituting this into Equation 2: \[ -2\lambda + 4(5\lambda - 28) = 44 \] \[ -2\lambda + 20\lambda - 112 = 44 \] \[ 18\lambda - 112 = 44 \] \[ 18\lambda = 156 \] \[ \lambda = 8.67 \] Now substitute \(\lambda\) back to find \(\mu\): \[ \mu = 5(8.67) - 28 = 43.35 - 28 = 15.35 \] ### Step 5: Find \(\lambda + \mu\) Now, calculate \(\lambda + \mu\): \[ \lambda + \mu = 8.67 + 15.35 = 24 \] ### Final Answer The sum of all possible values of \(\lambda + \mu\) is: \[ \boxed{24} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vec a=-2hat i-2hat j+4hat k,vec b=-2hat i+4hat j-2hat k and vec c=4hat i-2hat j-2hat k are coplanar.

The vectors vec a=hat i-2hat j+3hat k,vec b=-2hat i+3hat j-4hat k and vec c=hat i-3hat j+lambdahat k are coplanar if the value of lambda is

If vec a=2hat i+hat j+hat k,vec b=3hat i-4hat j+2hat k and vec c=hat i-2hat j+2hat k then the projection of vec a+vec b is

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If vectors vec a=hat i+2hat j-hat k,vec b=2hat i-hat j+hat k and vec c=lambdahat i+hat j+2widehat k are coplanar,then find the value of (lambda-4)

vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k,f in d|3vec a-2vec b+4vec c|

Find lambda so that the vectors vec a=2hat i-hat j+hat k,vec b=hat i+2hat j-3hat k and vec c=3hat i+lambdahat j+5hat k re coplanar.

If vec a=2hat i+2hat j-3hat k,vec b=hat i-2hat j+2hat k,vec c=4hat i+3hat j+3hat k then find the value of |vec a+2vec b+2vec c|

If quad vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k find |3vec a-2vec b+4vec c|

If vec a=3hat i-hat j-4hat k,vec b=2hat i+4hat j-3hat k and vec c=hat i+2hat j-widehat k, find |3vec a-2hat b+4hat c|

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Fifteen football players of a club-team are given 15T -shirts with the...

    Text Solution

    |

  2. Let f:R rarr R be a function such that f(x)=(x^(2)+2x+1)/(x^(2)+1).The...

    Text Solution

    |

  3. If the vectors vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2...

    Text Solution

    |

  4. .Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R be a functio...

    Text Solution

    |

  5. The domain of f(x)=(log(x+1)(x-2))/(e^(2log x)-(2x+3)),x in R is

    Text Solution

    |

  6. .Let a(1),a(2),a(3).... be a GP of increasing positive numbers.If the ...

    Text Solution

    |

  7. If the co-efficient of x^(9) in (alphax^(3)+(1)/(beta x))^(11) and the...

    Text Solution

    |

  8. Suppose f is a function satisfying f(x+y)-f(x)+f(y) for all x,y in N a...

    Text Solution

    |

  9. Let the coefficients of three consecutive terms in the binomial expans...

    Text Solution

    |

  10. Let f:R rarr R be a differentiable function that satisfies the relatio...

    Text Solution

    |

  11. Let the equation of the plane P containing the line x+10=(8-y)/(2)=z b...

    Text Solution

    |

  12. Five digit numbers are formed using the digits 1,2,3,5,7 with repetiti...

    Text Solution

    |

  13. Let the co-ordinates of one vertex of /ABC be A(0,2,alpha) and the oth...

    Text Solution

    |

  14. If all the six digit numbers x(1),x(2),x(3),x(4),x(5),x6 with 0 lt x(1...

    Text Solution

    |

  15. Let vec a,vecb and vec c the non-zero non-coplanar vectors.Let the pos...

    Text Solution

    |

  16. The value of the integral int(1/2)^2 tan^-1 x/x dx is equal to

    Text Solution

    |

  17. Let K be the sum of the coefficients of the odd powers of x in the exp...

    Text Solution

    |

  18. Let S={w1,w2,.....} be the sample space associated to a random experim...

    Text Solution

    |

  19. The set of all values of lambda for which the equation cos^2 2x-2 sin^...

    Text Solution

    |

  20. The plane 2x – y + z = 4 intersects the line segment joining the point...

    Text Solution

    |