Home
Class 12
MATHS
.Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(...

.Let `f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R` be a function which satisfies `f(x)=x+int_(0)^( pi/2)sin(x+y)f(y)dy`.Then `(a+b)` is equal to

A

`-pi(pi+2)`

B

`-pi(pi-2)`

C

`-2 pi(pi+2)`

D

`-2 pi(pi-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ f(x) = x + \frac{a}{x^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x \] and the equation: \[ f(x) = x + \int_0^{\frac{\pi}{2}} \sin(x+y) f(y) \, dy \] ### Step 1: Expand the integral Using the identity for sine, we can expand \(\sin(x+y)\): \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] Thus, we can rewrite the integral: \[ \int_0^{\frac{\pi}{2}} \sin(x+y) f(y) \, dy = \int_0^{\frac{\pi}{2}} (\sin x \cos y + \cos x \sin y) f(y) \, dy \] ### Step 2: Substitute \(f(y)\) Substituting \(f(y)\) into the integral gives: \[ \int_0^{\frac{\pi}{2}} (\sin x \cos y + \cos x \sin y) \left( y + \frac{a}{y^2 - 4} \sin y + \frac{b}{\pi^2 - 4} \cos y \right) dy \] ### Step 3: Split the integral This can be split into three separate integrals: 1. \(\int_0^{\frac{\pi}{2}} y \sin x \cos y \, dy\) 2. \(\int_0^{\frac{\pi}{2}} y \cos x \sin y \, dy\) 3. The terms involving \(\sin y\) and \(\cos y\). ### Step 4: Evaluate the integrals 1. The first integral can be evaluated as: \[ \int_0^{\frac{\pi}{2}} y \sin x \cos y \, dy = \sin x \int_0^{\frac{\pi}{2}} y \cos y \, dy \] Using integration by parts, we find: \[ \int_0^{\frac{\pi}{2}} y \cos y \, dy = \left[ y \sin y \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin y \, dy = 0 - [ -\cos y ]_0^{\frac{\pi}{2}} = 1 \] Thus, the first integral becomes \(\sin x\). 2. The second integral: \[ \int_0^{\frac{\pi}{2}} y \cos x \sin y \, dy = \cos x \int_0^{\frac{\pi}{2}} y \sin y \, dy \] Using integration by parts again: \[ \int_0^{\frac{\pi}{2}} y \sin y \, dy = \left[ -y \cos y \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos y \, dy = 0 + 1 = 1 \] Thus, this integral becomes \(\cos x\). ### Step 5: Combine results Combining these results, we have: \[ f(x) = x + \sin x + \cos x + \text{(terms involving a and b)} \] ### Step 6: Set coefficients equal From the original function \(f(x)\), we can equate coefficients for \(\sin x\) and \(\cos x\): - Coefficient of \(\sin x\): \(\frac{a}{x^2 - 4} = 1\) - Coefficient of \(\cos x\): \(\frac{b}{\pi^2 - 4} = 1\) ### Step 7: Solve for \(a\) and \(b\) From the equations: 1. \(a = x^2 - 4\) 2. \(b = \pi^2 - 4\) ### Step 8: Calculate \(a + b\) Now we find \(a + b\): \[ a + b = (x^2 - 4) + (\pi^2 - 4) = x^2 + \pi^2 - 8 \] Since \(x\) is arbitrary and does not affect the constants \(a\) and \(b\), we can conclude that: \[ a + b = \pi^2 - 8 \] ### Final Result Thus, the value of \(a + b\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Find f(x) which satisfies f(x)=x+int_0^(pi/2) sinx*cosy*f(y)dy

If f(pi)=2 and int_(0)^( pi)(f(x)+f'(x))sin xdx=5 then f(0) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

Find the function f(x) if it satisfies the condition f(x)=x+int_0^(pi//2)sin(x+y)f(y)dydot then find 'f(x)

Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, int[f(x)+f(-x)]dx is equal to

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let f:R rarr R be a function such that f(x)=(x^(2)+2x+1)/(x^(2)+1).The...

    Text Solution

    |

  2. If the vectors vec a=lambdahat i+muhat j+4hat k,vec b=-2hat i+4hat j-2...

    Text Solution

    |

  3. .Let f(x)=x+(a)/(x^(2)-4)sin x+(b)/(pi^(2)-4)cos x,x in R be a functio...

    Text Solution

    |

  4. The domain of f(x)=(log(x+1)(x-2))/(e^(2log x)-(2x+3)),x in R is

    Text Solution

    |

  5. .Let a(1),a(2),a(3).... be a GP of increasing positive numbers.If the ...

    Text Solution

    |

  6. If the co-efficient of x^(9) in (alphax^(3)+(1)/(beta x))^(11) and the...

    Text Solution

    |

  7. Suppose f is a function satisfying f(x+y)-f(x)+f(y) for all x,y in N a...

    Text Solution

    |

  8. Let the coefficients of three consecutive terms in the binomial expans...

    Text Solution

    |

  9. Let f:R rarr R be a differentiable function that satisfies the relatio...

    Text Solution

    |

  10. Let the equation of the plane P containing the line x+10=(8-y)/(2)=z b...

    Text Solution

    |

  11. Five digit numbers are formed using the digits 1,2,3,5,7 with repetiti...

    Text Solution

    |

  12. Let the co-ordinates of one vertex of /ABC be A(0,2,alpha) and the oth...

    Text Solution

    |

  13. If all the six digit numbers x(1),x(2),x(3),x(4),x(5),x6 with 0 lt x(1...

    Text Solution

    |

  14. Let vec a,vecb and vec c the non-zero non-coplanar vectors.Let the pos...

    Text Solution

    |

  15. The value of the integral int(1/2)^2 tan^-1 x/x dx is equal to

    Text Solution

    |

  16. Let K be the sum of the coefficients of the odd powers of x in the exp...

    Text Solution

    |

  17. Let S={w1,w2,.....} be the sample space associated to a random experim...

    Text Solution

    |

  18. The set of all values of lambda for which the equation cos^2 2x-2 sin^...

    Text Solution

    |

  19. The plane 2x – y + z = 4 intersects the line segment joining the point...

    Text Solution

    |

  20. Let R be a relation defined on N as a R b if 2a + 3b is a multiple of ...

    Text Solution

    |