Home
Class 12
MATHS
The plane 2x – y + z = 4 intersects the ...

The plane 2x – y + z = 4 intersects the line segment joining the points A (a, -2, 4) and B (2, b, -3) at the point C in the ratio 2 : 1 and the distance of the point C from the origin is `sqrt5` If ab`lt`0 and P is the point (a - b, b, 2b - a ) then `CP^2` is equal to

A

`73/3`

B

`97/3`

C

`16/3`

D

`17/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined process to find the coordinates of point C, the distance from the origin, and finally calculate \( CP^2 \). ### Step 1: Find the coordinates of point C The coordinates of point C, which divides the line segment AB in the ratio 2:1, can be calculated using the section formula. Given points: - \( A(a, -2, 4) \) - \( B(2, b, -3) \) Using the section formula: \[ C = \left( \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}, \frac{m_1 z_2 + m_2 z_1}{m_1 + m_2} \right) \] where \( m_1 = 2 \) and \( m_2 = 1 \). Calculating the coordinates of C: - \( x_C = \frac{2 \cdot 2 + 1 \cdot a}{2 + 1} = \frac{4 + a}{3} \) - \( y_C = \frac{2 \cdot b + 1 \cdot (-2)}{2 + 1} = \frac{2b - 2}{3} \) - \( z_C = \frac{2 \cdot (-3) + 1 \cdot 4}{2 + 1} = \frac{-6 + 4}{3} = \frac{-2}{3} \) Thus, the coordinates of point C are: \[ C\left(\frac{4 + a}{3}, \frac{2b - 2}{3}, -\frac{2}{3}\right) \] ### Step 2: Check if point C lies on the plane The plane equation is given as: \[ 2x - y + z = 4 \] Substituting the coordinates of C into the plane equation: \[ 2\left(\frac{4 + a}{3}\right) - \left(\frac{2b - 2}{3}\right) + \left(-\frac{2}{3}\right) = 4 \] Multiplying through by 3 to eliminate the denominator: \[ 2(4 + a) - (2b - 2) - 2 = 12 \] Expanding and simplifying: \[ 8 + 2a - 2b + 2 - 2 = 12 \] \[ 2a - 2b + 8 = 12 \] \[ 2a - 2b = 4 \implies a - b = 2 \quad \text{(Equation 1)} \] ### Step 3: Find the distance of point C from the origin The distance from the origin to point C is given as \( \sqrt{5} \): \[ OC = \sqrt{\left(\frac{4 + a}{3}\right)^2 + \left(\frac{2b - 2}{3}\right)^2 + \left(-\frac{2}{3}\right)^2} = \sqrt{5} \] Squaring both sides: \[ \left(\frac{4 + a}{3}\right)^2 + \left(\frac{2b - 2}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 = 5 \] Multiplying by 9: \[ (4 + a)^2 + (2b - 2)^2 + 4 = 45 \] Simplifying: \[ (4 + a)^2 + (2b - 2)^2 = 41 \quad \text{(Equation 2)} \] ### Step 4: Solve the equations From Equation 1, we have \( a = b + 2 \). Substitute \( a \) in Equation 2: \[ (4 + (b + 2))^2 + (2b - 2)^2 = 41 \] \[ (6 + b)^2 + (2b - 2)^2 = 41 \] Expanding: \[ (36 + 12b + b^2) + (4b^2 - 8b + 4) = 41 \] Combining like terms: \[ 5b^2 + 4b - 1 = 0 \] Using the quadratic formula: \[ b = \frac{-4 \pm \sqrt{16 + 20}}{10} = \frac{-4 \pm \sqrt{36}}{10} = \frac{-4 \pm 6}{10} \] Thus, \( b = \frac{2}{10} = \frac{1}{5} \) or \( b = \frac{-10}{10} = -1 \). ### Step 5: Determine values of a and check condition \( ab < 0 \) If \( b = \frac{1}{5} \), then \( a = \frac{1}{5} + 2 = \frac{11}{5} \) (both positive, not valid). If \( b = -1 \), then \( a = -1 + 2 = 1 \) (valid since \( ab < 0 \)). ### Step 6: Find point P Using \( a = 1 \) and \( b = -1 \): \[ P = (a - b, b, 2b - a) = (1 - (-1), -1, 2(-1) - 1) = (2, -1, -3) \] ### Step 7: Calculate \( CP^2 \) Coordinates of C: \[ C\left(\frac{4 + 1}{3}, \frac{2(-1) - 2}{3}, -\frac{2}{3}\right) = \left(\frac{5}{3}, -\frac{4}{3}, -\frac{2}{3}\right) \] Coordinates of P: \[ P(2, -1, -3) \] Calculating \( CP^2 \): \[ CP^2 = \left(2 - \frac{5}{3}\right)^2 + \left(-1 + \frac{4}{3}\right)^2 + \left(-3 + \frac{2}{3}\right)^2 \] Calculating each term: 1. \( \left(2 - \frac{5}{3}\right)^2 = \left(\frac{6}{3} - \frac{5}{3}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \) 2. \( \left(-1 + \frac{4}{3}\right)^2 = \left(-\frac{3}{3} + \frac{4}{3}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \) 3. \( \left(-3 + \frac{2}{3}\right)^2 = \left(-\frac{9}{3} + \frac{2}{3}\right)^2 = \left(-\frac{7}{3}\right)^2 = \frac{49}{9} \) Adding them up: \[ CP^2 = \frac{1}{9} + \frac{1}{9} + \frac{49}{9} = \frac{51}{9} = \frac{17}{3} \] ### Final Answer Thus, \( CP^2 = \frac{17}{3} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If point P(4,2) lies on the line segment joining the points A(2,1) and B(8,4) then :

If point P(4,2) lies on the line segment joining the points A(2,1) and B(8,4) then

The XZ plane divides the line segment joining the points (3,2,b) and (a,-4,3) in the ratio

If the point C divides the line segment joining the points A(4, -2, 5) and B(-2, 3, 7) externally in the ratio 8:5, then points C is

If the point P(2,1) lies on the line segment joining points A (4,2) and B (8,4) then :

If the point C divides the line segment joining the points A(2, -1, -4) and B(3, -2, 5) externally in the ratio 3:2, then points C is

If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then:

The line segment joining the points A(3,2) and B (5,1) is divided at the point P in the ratio 1 : 2 and it lies on the line 3x-18y+k=0 . Find the value of k.

The coordinates of the point P dividing the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2:1 is

If the point P (2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let S={w1,w2,.....} be the sample space associated to a random experim...

    Text Solution

    |

  2. The set of all values of lambda for which the equation cos^2 2x-2 sin^...

    Text Solution

    |

  3. The plane 2x – y + z = 4 intersects the line segment joining the point...

    Text Solution

    |

  4. Let R be a relation defined on N as a R b if 2a + 3b is a multiple of ...

    Text Solution

    |

  5. The statement BrArr((~A) vee B) is equivalent to :

    Text Solution

    |

  6. If the lines (x-1)/1=(y-2)/2=(z+3)/1 and (x-a)/2=(y+2)/3=(z-3)/1 inter...

    Text Solution

    |

  7. The shortest distance between the lines (x-1)/2=(y+8)/-7=(z-4)/5 and (...

    Text Solution

    |

  8. The set of all values of t epsilonR, for which the matrix [(e^t,e^-t(s...

    Text Solution

    |

  9. Consider a function f: INrarrIR,satisfying f(1)+2(f2)+3f(3)+ ... +xf(x...

    Text Solution

    |

  10. The letters of the word OUGHT are written in all possible ways and the...

    Text Solution

    |

  11. Let f and g be twice differentiable functions on R such that f"(x) =g"...

    Text Solution

    |

  12. The value of the integral int1^2((t^4+1)/(t^6+1))dt is

    Text Solution

    |

  13. Let y = y (x) be the solution of the differential equation xloge x dy/...

    Text Solution

    |

  14. If veca=veci+2veck,vecb=veci+vecj+veck,vecc=7veci-3vecj+4veck,vecr xxv...

    Text Solution

    |

  15. If the tangent at a point P on the parabola y^2=3x is parallel to the ...

    Text Solution

    |

  16. The number of 3 digit numbers, that are divisible by either 3 or 4 but...

    Text Solution

    |

  17. Let veca=4veci+3vecj and vecb=3veci-4vecj+5veck. If vecc is a vector s...

    Text Solution

    |

  18. The area of the region A={(x,y):|cosx-sinx|leylesinx,0lexlepi/2} is

    Text Solution

    |

  19. Let a1=b1=1 and an=a(n-1)+(n-1),bn=b(n-1)+a(n-1),AA n ge2.If S=sum(n-1...

    Text Solution

    |

  20. The total number of 4-digit numbers whose greatest common divisor with...

    Text Solution

    |