Home
Class 12
MATHS
The set of all values of t epsilonR, for...

The set of all values of t `epsilon`R, for which the matrix `[(e^t,e^-t(sin t-2cost),e^-t(-2sint-cost)),(e^t,e^-t(2sin t+2cost),e^-t(sint-2cost)),(e^t,e^-t cost,e^-t sint)]` is invertible, is

A

R

B

`{(2k+1)pi/2,k epsilon z}`

C

`{kpi,k epsilon z}`

D

`{kpi+pi/4,k epsilon z}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the set of all values of \( t \in \mathbb{R} \) for which the given matrix is invertible, we need to find the determinant of the matrix and see when it is non-zero. Given the matrix: \[ A = \begin{pmatrix} e^t & e^{-t}(\sin t - 2\cos t) & e^{-t}(-2\sin t - \cos t) \\ e^t & e^{-t}(2\sin t + 2\cos t) & e^{-t}(\sin t - 2\cos t) \\ e^t & e^{-t}\cos t & e^{-t}\sin t \end{pmatrix} \] ### Step 1: Factor out common terms We can factor out \( e^t \) from the first column and \( e^{-t} \) from the second and third columns: \[ \text{det}(A) = e^t \cdot e^{-t} \cdot e^{-t} \cdot \text{det}\begin{pmatrix} 1 & \sin t - 2\cos t & -2\sin t - \cos t \\ 1 & 2\sin t + 2\cos t & \sin t - 2\cos t \\ 1 & \cos t & \sin t \end{pmatrix} \] This simplifies to: \[ \text{det}(A) = e^{-t} \cdot \text{det}\begin{pmatrix} 1 & \sin t - 2\cos t & -2\sin t - \cos t \\ 1 & 2\sin t + 2\cos t & \sin t - 2\cos t \\ 1 & \cos t & \sin t \end{pmatrix} \] ### Step 2: Row operations We can perform row operations to simplify the determinant. Subtract the third row from the first and second rows: \[ \text{det}(A) = e^{-t} \cdot \text{det}\begin{pmatrix} 0 & (\sin t - 2\cos t) - \sin t & (-2\sin t - \cos t) - \sin t \\ 0 & (2\sin t + 2\cos t) - \sin t & (\sin t - 2\cos t) - \sin t \\ 1 & \cos t & \sin t \end{pmatrix} \] This simplifies to: \[ \text{det}(A) = e^{-t} \cdot \text{det}\begin{pmatrix} 0 & -2\cos t & -3\sin t \\ 0 & \sin t + 2\cos t & 0 \\ 1 & \cos t & \sin t \end{pmatrix} \] ### Step 3: Expand the determinant The determinant of a matrix with a row of zeros is zero. Therefore, the determinant simplifies to: \[ \text{det}(A) = e^{-t} \cdot 0 = 0 \] This means the determinant is zero when the first two rows are linearly dependent. ### Step 4: Condition for invertibility For the matrix to be invertible, the determinant must be non-zero. Since \( e^{-t} \) is never zero for any real \( t \), we need to ensure that the determinant of the \( 3 \times 3 \) matrix is non-zero. ### Conclusion The determinant will be non-zero if the rows are linearly independent. Since we have shown that the determinant simplifies to a form that can be zero, we conclude that the matrix is invertible for all \( t \in \mathbb{R} \). Thus, the set of all values of \( t \) for which the matrix is invertible is: \[ \text{All } t \in \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

int e^(t)(cost-sin t)dt

The equation x = (e ^(t) + e ^(-t))/(2), y = (e ^(t) -e^(-t))/(2), t in R, represents

If (1+sint)(1+cost)=5/4dot Find the value (1-sint)(1-cos t)

x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If the lines (x-1)/1=(y-2)/2=(z+3)/1 and (x-a)/2=(y+2)/3=(z-3)/1 inter...

    Text Solution

    |

  2. The shortest distance between the lines (x-1)/2=(y+8)/-7=(z-4)/5 and (...

    Text Solution

    |

  3. The set of all values of t epsilonR, for which the matrix [(e^t,e^-t(s...

    Text Solution

    |

  4. Consider a function f: INrarrIR,satisfying f(1)+2(f2)+3f(3)+ ... +xf(x...

    Text Solution

    |

  5. The letters of the word OUGHT are written in all possible ways and the...

    Text Solution

    |

  6. Let f and g be twice differentiable functions on R such that f"(x) =g"...

    Text Solution

    |

  7. The value of the integral int1^2((t^4+1)/(t^6+1))dt is

    Text Solution

    |

  8. Let y = y (x) be the solution of the differential equation xloge x dy/...

    Text Solution

    |

  9. If veca=veci+2veck,vecb=veci+vecj+veck,vecc=7veci-3vecj+4veck,vecr xxv...

    Text Solution

    |

  10. If the tangent at a point P on the parabola y^2=3x is parallel to the ...

    Text Solution

    |

  11. The number of 3 digit numbers, that are divisible by either 3 or 4 but...

    Text Solution

    |

  12. Let veca=4veci+3vecj and vecb=3veci-4vecj+5veck. If vecc is a vector s...

    Text Solution

    |

  13. The area of the region A={(x,y):|cosx-sinx|leylesinx,0lexlepi/2} is

    Text Solution

    |

  14. Let a1=b1=1 and an=a(n-1)+(n-1),bn=b(n-1)+a(n-1),AA n ge2.If S=sum(n-1...

    Text Solution

    |

  15. The total number of 4-digit numbers whose greatest common divisor with...

    Text Solution

    |

  16. Let A be a symmetric matrix such that |A|=2 and |(2,1),(3,3/2)|A=|(1,2...

    Text Solution

    |

  17. A triangle is formed by the tangents at the point (2, 2) on the curves...

    Text Solution

    |

  18. Let X = {11, 12, 13, … , 40, 41} and Y = {61, 62, 63, … 90 , 91} be th...

    Text Solution

    |

  19. If the equation of the normal to the curve y = (x-a)/((x+b)(x-2) at th...

    Text Solution

    |

  20. Let alpha=8-14i,A={z epsilon c:(alphaz-overlineaoverlinez)/((z^2-(over...

    Text Solution

    |