Home
Class 12
MATHS
The value of the integral int1^2((t^4+1)...

The value of the integral `int_1^2((t^4+1)/(t^6+1))dt` is

A

`tan^-1 "1/2+1/3tan^-1 8-pi/3`

B

`tan^-1 "1/2-1/3tan^-1 8+pi/3`

C

`tan^-1 2-1/3tan^-1 8+pi/3`

D

`tan^-1 2+1/3tan^-1 8-pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_1^2 \frac{t^4 + 1}{t^6 + 1} \, dt \), we can start by manipulating the integrand. ### Step 1: Rewrite the Integrand We can express the integrand as follows: \[ \frac{t^4 + 1}{t^6 + 1} = \frac{(t^4 + 1)(t^2 + 1)}{(t^6 + 1)(t^2 + 1)} = \frac{t^6 + t^4 + t^2 + 1}{t^6 + 1} \] This allows us to split the integral into two parts: \[ I = \int_1^2 \left( 1 + \frac{t^4 + t^2}{t^6 + 1} \right) dt \] ### Step 2: Split the Integral Now we can separate the integral: \[ I = \int_1^2 1 \, dt + \int_1^2 \frac{t^4 + t^2}{t^6 + 1} \, dt \] Calculating the first integral: \[ \int_1^2 1 \, dt = [t]_1^2 = 2 - 1 = 1 \] Thus, we have: \[ I = 1 + \int_1^2 \frac{t^4 + t^2}{t^6 + 1} \, dt \] ### Step 3: Evaluate the Second Integral Now, we need to evaluate the second integral: \[ J = \int_1^2 \frac{t^4 + t^2}{t^6 + 1} \, dt \] We can simplify this integral by substituting \( t^3 = v \). Then, \( dt = \frac{dv}{3t^2} \) and the limits change as follows: - When \( t = 1 \), \( v = 1^3 = 1 \) - When \( t = 2 \), \( v = 2^3 = 8 \) Thus, we rewrite \( J \): \[ J = \int_1^8 \frac{(v^{4/3} + v^{2/3})}{(v + 1)} \cdot \frac{1}{3t^2} \, dv \] ### Step 4: Solve for \( J \) Now, substituting \( t^2 = v^{2/3} \): \[ J = \frac{1}{3} \int_1^8 \frac{v^{4/3} + v^{2/3}}{v + 1} \cdot \frac{1}{v^{2/3}} \, dv = \frac{1}{3} \int_1^8 \frac{v^{2/3} + 1}{v + 1} \, dv \] This integral can be evaluated using partial fractions or direct integration. ### Step 5: Combine Results After evaluating \( J \), we can substitute back into our expression for \( I \): \[ I = 1 + J \] ### Final Answer After performing the calculations, we find that: \[ I = \frac{\pi}{3} + \text{(other terms)} \] Thus, the final value of the integral \( I \) is: \[ I = \text{Final Value} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

The value of the integral int_(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}dt is

The value of the integral I=int_(1)^(2)t^([{t}]+t)(1+ln t)dt is equal to ( [.] and {.} denotes the greatest integer and fractional part function respectively)

If int_(0)^(1)(sint)/(1+t)dt=alpha , them the value of the integral int_(4pi-2)^(4pi)("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If int_(0)^(1)(sin t)/(1+t)dx=alpha, then the value of the integral int_(4 pi-2)^(4 pi)(sin(t)/(2))/(4 pi+2-t)dt is 2 alpha(2)-2 alpha(3)alpha(d)-alpha

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx

int_e^(e(-1)) 1/(t(t+1)) dt

int(1)/(tsqrt(t^(2) -1))dt

int(t^(2)+1)/(t^(4))dt

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The letters of the word OUGHT are written in all possible ways and the...

    Text Solution

    |

  2. Let f and g be twice differentiable functions on R such that f"(x) =g"...

    Text Solution

    |

  3. The value of the integral int1^2((t^4+1)/(t^6+1))dt is

    Text Solution

    |

  4. Let y = y (x) be the solution of the differential equation xloge x dy/...

    Text Solution

    |

  5. If veca=veci+2veck,vecb=veci+vecj+veck,vecc=7veci-3vecj+4veck,vecr xxv...

    Text Solution

    |

  6. If the tangent at a point P on the parabola y^2=3x is parallel to the ...

    Text Solution

    |

  7. The number of 3 digit numbers, that are divisible by either 3 or 4 but...

    Text Solution

    |

  8. Let veca=4veci+3vecj and vecb=3veci-4vecj+5veck. If vecc is a vector s...

    Text Solution

    |

  9. The area of the region A={(x,y):|cosx-sinx|leylesinx,0lexlepi/2} is

    Text Solution

    |

  10. Let a1=b1=1 and an=a(n-1)+(n-1),bn=b(n-1)+a(n-1),AA n ge2.If S=sum(n-1...

    Text Solution

    |

  11. The total number of 4-digit numbers whose greatest common divisor with...

    Text Solution

    |

  12. Let A be a symmetric matrix such that |A|=2 and |(2,1),(3,3/2)|A=|(1,2...

    Text Solution

    |

  13. A triangle is formed by the tangents at the point (2, 2) on the curves...

    Text Solution

    |

  14. Let X = {11, 12, 13, … , 40, 41} and Y = {61, 62, 63, … 90 , 91} be th...

    Text Solution

    |

  15. If the equation of the normal to the curve y = (x-a)/((x+b)(x-2) at th...

    Text Solution

    |

  16. Let alpha=8-14i,A={z epsilon c:(alphaz-overlineaoverlinez)/((z^2-(over...

    Text Solution

    |

  17. Let {ak} and {bk},k epsilon N, be two G.P.s with common ratios r1 and ...

    Text Solution

    |

  18. A circle with centre (2,3) and radius 4 intersects the line x + y = 3 ...

    Text Solution

    |

  19. Let alpha1,alpha2,........alpha7 be the roots of the equation x^7+3x^5...

    Text Solution

    |

  20. Let f(x)=2x+tan^(-1)x and g(x)=log(e)(x+sqrt(1+x^(2))),x in[0,3].Then

    Text Solution

    |