Home
Class 12
MATHS
Let veca=4veci+3vecj and vecb=3veci-4vec...

Let `veca=4veci+3vecj and vecb=3veci-4vecj+5veck`. If `vecc` is a vector such that `vecc.(veca xx vecb)+25=0,vecc.(hati+hatj+hatk)=4`, and projection of `vecc` on `veca` is 1,then the projection of `vcec` on `vecb` equals

A

`5/sqrt2`

B

`1/sqrt2`

C

`1/5`

D

`3/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will define the vectors, calculate necessary dot products, and find the required projections. ### Step 1: Define the vectors Let: \[ \vec{a} = 4\hat{i} + 3\hat{j} \] \[ \vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k} \] Let \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\). ### Step 2: Use the condition \(\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4\) This gives us: \[ \vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = x + y + z = 4 \quad \text{(Equation 1)} \] ### Step 3: Calculate \(\vec{a} \times \vec{b}\) Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & 0 \\ 3 & -4 & 5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(3 \cdot 5 - 0 \cdot (-4)) - \hat{j}(4 \cdot 5 - 0 \cdot 3) + \hat{k}(4 \cdot (-4) - 3 \cdot 3) \] \[ = 15\hat{i} - 20\hat{j} - (16 + 9)\hat{k} \] \[ = 15\hat{i} - 20\hat{j} - 25\hat{k} \] Thus, \[ \vec{a} \times \vec{b} = 15\hat{i} - 20\hat{j} - 25\hat{k} \] ### Step 4: Use the condition \(\vec{c} \cdot (\vec{a} \times \vec{b}) + 25 = 0\) This gives us: \[ \vec{c} \cdot (15\hat{i} - 20\hat{j} - 25\hat{k}) + 25 = 0 \] \[ 15x - 20y - 25z + 25 = 0 \] \[ 15x - 20y - 25z = -25 \quad \text{(Equation 2)} \] ### Step 5: Find the projection of \(\vec{c}\) on \(\vec{a}\) The projection of \(\vec{c}\) on \(\vec{a}\) is given as 1: \[ \text{Projection of } \vec{c} \text{ on } \vec{a} = \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} = 1 \] Calculating \(|\vec{a}|\): \[ |\vec{a}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5 \] Thus, \[ \vec{c} \cdot \vec{a} = 5 \] Calculating \(\vec{c} \cdot \vec{a}\): \[ \vec{c} \cdot \vec{a} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (4\hat{i} + 3\hat{j}) = 4x + 3y = 5 \quad \text{(Equation 3)} \] ### Step 6: Solve the equations We have the following equations: 1. \(x + y + z = 4\) (Equation 1) 2. \(15x - 20y - 25z = -25\) (Equation 2) 3. \(4x + 3y = 5\) (Equation 3) From Equation 3, express \(y\) in terms of \(x\): \[ y = \frac{5 - 4x}{3} \] Substituting \(y\) into Equation 1: \[ x + \frac{5 - 4x}{3} + z = 4 \] Multiplying through by 3 to eliminate the fraction: \[ 3x + 5 - 4x + 3z = 12 \] \[ -x + 3z = 7 \quad \text{(Equation 4)} \] Now substitute \(y\) into Equation 2: \[ 15x - 20\left(\frac{5 - 4x}{3}\right) - 25z = -25 \] Multiplying through by 3: \[ 45x - 100 + 80x - 75z = -75 \] \[ 125x - 75z = 25 \quad \text{(Equation 5)} \] ### Step 7: Solve Equations 4 and 5 From Equation 4: \[ 3z = x + 7 \implies z = \frac{x + 7}{3} \] Substituting into Equation 5: \[ 125x - 75\left(\frac{x + 7}{3}\right) = 25 \] Multiplying through by 3: \[ 375x - 75(x + 7) = 75 \] \[ 375x - 75x - 525 = 75 \] \[ 300x = 600 \implies x = 2 \] ### Step 8: Find \(y\) and \(z\) Substituting \(x = 2\) back into Equation 3: \[ 4(2) + 3y = 5 \implies 8 + 3y = 5 \implies 3y = -3 \implies y = -1 \] Substituting \(x = 2\) and \(y = -1\) into Equation 1: \[ 2 - 1 + z = 4 \implies z = 3 \] ### Step 9: Find \(\vec{c}\) Thus, \[ \vec{c} = 2\hat{i} - \hat{j} + 3\hat{k} \] ### Step 10: Find the projection of \(\vec{c}\) on \(\vec{b}\) The projection of \(\vec{c}\) on \(\vec{b}\) is given by: \[ \text{Projection of } \vec{c} \text{ on } \vec{b} = \frac{\vec{c} \cdot \vec{b}}{|\vec{b}|} \] Calculating \(\vec{c} \cdot \vec{b}\): \[ \vec{c} \cdot \vec{b} = (2\hat{i} - \hat{j} + 3\hat{k}) \cdot (3\hat{i} - 4\hat{j} + 5\hat{k}) = 2 \cdot 3 + (-1)(-4) + 3 \cdot 5 = 6 + 4 + 15 = 25 \] Calculating \(|\vec{b}|\): \[ |\vec{b}| = \sqrt{3^2 + (-4)^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2} \] Thus, \[ \text{Projection of } \vec{c} \text{ on } \vec{b} = \frac{25}{5\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} \] ### Final Answer The projection of \(\vec{c}\) on \(\vec{b}\) equals \(\frac{5\sqrt{2}}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

Let veca=4veci+3vecj and vecb=3veci+4vecj . a.Find the magnitudes of a. veca, b. vecb, c. veca+vecb and d. veca-vecb.

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

If veca=veci-2vecj+veck, vecb=veci+vecj+veck and vecc=veci+2vecj+veck then show that veca.(vecbxxvecc)=(vecaxxvecb).vecc.

IF veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck find the angle between veca and vecb .

Let veca and vecb be two orthogonal unit vectors and vecc is a vector such that vecc xx vecb = veca-vecc , then |vecc| is equal to

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If the tangent at a point P on the parabola y^2=3x is parallel to the ...

    Text Solution

    |

  2. The number of 3 digit numbers, that are divisible by either 3 or 4 but...

    Text Solution

    |

  3. Let veca=4veci+3vecj and vecb=3veci-4vecj+5veck. If vecc is a vector s...

    Text Solution

    |

  4. The area of the region A={(x,y):|cosx-sinx|leylesinx,0lexlepi/2} is

    Text Solution

    |

  5. Let a1=b1=1 and an=a(n-1)+(n-1),bn=b(n-1)+a(n-1),AA n ge2.If S=sum(n-1...

    Text Solution

    |

  6. The total number of 4-digit numbers whose greatest common divisor with...

    Text Solution

    |

  7. Let A be a symmetric matrix such that |A|=2 and |(2,1),(3,3/2)|A=|(1,2...

    Text Solution

    |

  8. A triangle is formed by the tangents at the point (2, 2) on the curves...

    Text Solution

    |

  9. Let X = {11, 12, 13, … , 40, 41} and Y = {61, 62, 63, … 90 , 91} be th...

    Text Solution

    |

  10. If the equation of the normal to the curve y = (x-a)/((x+b)(x-2) at th...

    Text Solution

    |

  11. Let alpha=8-14i,A={z epsilon c:(alphaz-overlineaoverlinez)/((z^2-(over...

    Text Solution

    |

  12. Let {ak} and {bk},k epsilon N, be two G.P.s with common ratios r1 and ...

    Text Solution

    |

  13. A circle with centre (2,3) and radius 4 intersects the line x + y = 3 ...

    Text Solution

    |

  14. Let alpha1,alpha2,........alpha7 be the roots of the equation x^7+3x^5...

    Text Solution

    |

  15. Let f(x)=2x+tan^(-1)x and g(x)=log(e)(x+sqrt(1+x^(2))),x in[0,3].Then

    Text Solution

    |

  16. Let R be a relation on R,given by R={(a,b):3a-3b+sqrt(7) is an irratio...

    Text Solution

    |

  17. The shortest distance between the lines (x-5)/(1)=(y-2)/(2)=(z-4)/(-3...

    Text Solution

    |

  18. The sum to 10 terms of the series (1)/(1+1^(2)+1^(4))+(2)/(1+2^(2)+2^...

    Text Solution

    |

  19. Let S={x:x in IR and (sqrt(3)+sqrt(2))^(x^(2)-4)+(sqrt(3)-sqrt(2))^(x^...

    Text Solution

    |

  20. The mean and variance of 5 observations are 5 and 8 respectively. If 3...

    Text Solution

    |