Home
Class 12
MATHS
The area of the region A={(x,y):|cosx-si...

The area of the region A=`{(x,y):|cosx-sinx|leylesinx,0lexlepi/2}` is

A

`sqrt5-2sqrt2+1`

B

`1-3/sqrt2+4/sqrt5`

C

`3/sqrt5-3/sqrt2+1`

D

`sqrt5+2sqrt2-4.5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( | \cos x - \sin x | \leq y \leq \sin x \) for \( 0 \leq x \leq \frac{\pi}{2} \), we can break down the problem step by step. ### Step 1: Analyze the inequalities The inequality \( | \cos x - \sin x | \leq y \) can be split into two cases: 1. \( \cos x - \sin x \leq y \) 2. \( -(\cos x - \sin x) \leq y \) or \( \sin x - \cos x \leq y \) Thus, we have: - \( \sin x - \cos x \leq y \leq \sin x \) for \( \frac{\pi}{4} < x \leq \frac{\pi}{2} \) - \( \cos x - \sin x \leq y \leq \sin x \) for \( 0 \leq x \leq \frac{\pi}{4} \) ### Step 2: Find intersection points To find the intersection points of \( \cos x = \sin x \): - This occurs when \( x = \frac{\pi}{4} \). ### Step 3: Set up the area calculation The area \( A \) can be calculated as the integral of the upper function minus the lower function over the specified intervals. #### For \( 0 \leq x \leq \frac{\pi}{4} \): The upper function is \( \sin x \) and the lower function is \( \cos x - \sin x \). \[ A_1 = \int_0^{\frac{\pi}{4}} \left( \sin x - (\cos x - \sin x) \right) dx = \int_0^{\frac{\pi}{4}} (2 \sin x - \cos x) dx \] #### For \( \frac{\pi}{4} < x \leq \frac{\pi}{2} \): The upper function is \( \sin x \) and the lower function is \( \sin x - \cos x \). \[ A_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left( \sin x - (\sin x - \cos x) \right) dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x dx \] ### Step 4: Calculate the integrals #### Integral \( A_1 \): \[ A_1 = \int_0^{\frac{\pi}{4}} (2 \sin x - \cos x) dx \] Calculating this integral: \[ = \left[-2 \cos x - \sin x \right]_0^{\frac{\pi}{4}} = \left[-2 \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \left[-2 \cdot 1 - 0 \right] \] \[ = \left[-\frac{3\sqrt{2}}{2}\right] - (-2) = 2 - \frac{3\sqrt{2}}{2} \] #### Integral \( A_2 \): \[ A_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x dx = [\sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \left[1 - \frac{1}{\sqrt{2}}\right] \] ### Step 5: Combine the areas The total area \( A \) is: \[ A = A_1 + A_2 = \left(2 - \frac{3\sqrt{2}}{2}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) \] \[ = 3 - \frac{3\sqrt{2}}{2} - \frac{1}{\sqrt{2}} = 3 - \frac{5\sqrt{2}}{2} \] ### Final Answer Thus, the area of the region \( A \) is: \[ A = 3 - \frac{5\sqrt{2}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The solution of the equation cos^(2)x-2cosx=4sinx-sin2x,0lexlepi , is

Using integration find the area of the region {(x,y):x^(2)+y^(2) =ax,x,y>=0}

Find the area of the region :{(x,y):0<=y<=x^(2),0<=y<=x+2;0<=x<=3}

The area of the region bounded by the Y-axisy=cos x and y=sin x Where 0lexlepi/2, is

Solve the equation (sinx+cosx)^(1+sin2x)=2 , when 0 lexlepi

Let f(x) = 2sin^3x-3sin^2+12sinx+5, 0lexlepi/2 Then f(x)is

Find the range of f(x)=abs(sinx)+abs(cosx)0lexlepi

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The number of 3 digit numbers, that are divisible by either 3 or 4 but...

    Text Solution

    |

  2. Let veca=4veci+3vecj and vecb=3veci-4vecj+5veck. If vecc is a vector s...

    Text Solution

    |

  3. The area of the region A={(x,y):|cosx-sinx|leylesinx,0lexlepi/2} is

    Text Solution

    |

  4. Let a1=b1=1 and an=a(n-1)+(n-1),bn=b(n-1)+a(n-1),AA n ge2.If S=sum(n-1...

    Text Solution

    |

  5. The total number of 4-digit numbers whose greatest common divisor with...

    Text Solution

    |

  6. Let A be a symmetric matrix such that |A|=2 and |(2,1),(3,3/2)|A=|(1,2...

    Text Solution

    |

  7. A triangle is formed by the tangents at the point (2, 2) on the curves...

    Text Solution

    |

  8. Let X = {11, 12, 13, … , 40, 41} and Y = {61, 62, 63, … 90 , 91} be th...

    Text Solution

    |

  9. If the equation of the normal to the curve y = (x-a)/((x+b)(x-2) at th...

    Text Solution

    |

  10. Let alpha=8-14i,A={z epsilon c:(alphaz-overlineaoverlinez)/((z^2-(over...

    Text Solution

    |

  11. Let {ak} and {bk},k epsilon N, be two G.P.s with common ratios r1 and ...

    Text Solution

    |

  12. A circle with centre (2,3) and radius 4 intersects the line x + y = 3 ...

    Text Solution

    |

  13. Let alpha1,alpha2,........alpha7 be the roots of the equation x^7+3x^5...

    Text Solution

    |

  14. Let f(x)=2x+tan^(-1)x and g(x)=log(e)(x+sqrt(1+x^(2))),x in[0,3].Then

    Text Solution

    |

  15. Let R be a relation on R,given by R={(a,b):3a-3b+sqrt(7) is an irratio...

    Text Solution

    |

  16. The shortest distance between the lines (x-5)/(1)=(y-2)/(2)=(z-4)/(-3...

    Text Solution

    |

  17. The sum to 10 terms of the series (1)/(1+1^(2)+1^(4))+(2)/(1+2^(2)+2^...

    Text Solution

    |

  18. Let S={x:x in IR and (sqrt(3)+sqrt(2))^(x^(2)-4)+(sqrt(3)-sqrt(2))^(x^...

    Text Solution

    |

  19. The mean and variance of 5 observations are 5 and 8 respectively. If 3...

    Text Solution

    |

  20. Let S be the set of all solutions of the equation cos^(-1)(2x)-2cos^(-...

    Text Solution

    |