Home
Class 12
MATHS
Let S be the set of all solutions of the...

Let `S` be the set of all solutions of the equation `cos^(-1)(2x)-2cos^(-1)(sqrt(1-x^(2)))=pi,x in[-(1)/(2),(1)/(2)]`.Then `sum_(x=S)2sin^(-1)(x^(2)-1)` is equal to

A

`0`

B

`(-2 pi)/(3)`

C

`pi-2sin^(-1)((sqrt(3))/(4))`

D

`pi-sin^(-1)((sqrt(3))/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi \) for \( x \) in the interval \( \left[-\frac{1}{2}, \frac{1}{2}\right] \), we will follow these steps: ### Step 1: Rewrite the equation We start by rewriting the equation: \[ \cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi \] This can be rearranged to: \[ \cos^{-1}(2x) = \pi + 2\cos^{-1}(\sqrt{1-x^2}) \] ### Step 2: Apply the cosine function Taking the cosine of both sides, we have: \[ 2x = \cos(\pi + 2\cos^{-1}(\sqrt{1-x^2})) \] Using the identity \( \cos(\pi + \theta) = -\cos(\theta) \): \[ 2x = -\cos(2\cos^{-1}(\sqrt{1-x^2})) \] ### Step 3: Simplify using cosine double angle formula Using the double angle formula \( \cos(2\theta) = 2\cos^2(\theta) - 1 \): \[ \cos(2\cos^{-1}(\sqrt{1-x^2})) = 2(\sqrt{1-x^2})^2 - 1 = 2(1-x^2) - 1 = 1 - 2x^2 \] Substituting this back, we have: \[ 2x = -(1 - 2x^2) \] This simplifies to: \[ 2x = -1 + 2x^2 \] ### Step 4: Rearranging the equation Rearranging gives us: \[ 2x^2 - 2x - 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -2, c = -1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{2 \pm \sqrt{4 + 8}}{4} = \frac{2 \pm \sqrt{12}}{4} = \frac{2 \pm 2\sqrt{3}}{4} = \frac{1 \pm \sqrt{3}}{2} \] ### Step 6: Determine valid solutions within the interval The solutions are: \[ x = \frac{1 + \sqrt{3}}{2} \quad \text{and} \quad x = \frac{1 - \sqrt{3}}{2} \] We check which of these values lie within the interval \( \left[-\frac{1}{2}, \frac{1}{2}\right] \): - \( \frac{1 + \sqrt{3}}{2} > \frac{1}{2} \) (not valid) - \( \frac{1 - \sqrt{3}}{2} \) is valid since \( \sqrt{3} \approx 1.732 \) gives \( \frac{1 - 1.732}{2} < -\frac{1}{2} \). Thus, the only valid solution is: \[ x = \frac{1 - \sqrt{3}}{2} \] ### Step 7: Calculate the required sum Now we need to compute: \[ \sum_{x \in S} 2\sin^{-1}(x^2 - 1) \] Calculating \( x^2 \): \[ x^2 = \left(\frac{1 - \sqrt{3}}{2}\right)^2 = \frac{(1 - 2\sqrt{3} + 3)}{4} = \frac{4 - 2\sqrt{3}}{4} = 1 - \frac{\sqrt{3}}{2} \] Thus: \[ x^2 - 1 = -\frac{\sqrt{3}}{2} \] Now, calculate \( 2\sin^{-1}(-\frac{\sqrt{3}}{2}) \): \[ \sin^{-1}(-\frac{\sqrt{3}}{2}) = -\frac{\pi}{3} \] Therefore: \[ 2\sin^{-1}(-\frac{\sqrt{3}}{2}) = 2 \cdot -\frac{\pi}{3} = -\frac{2\pi}{3} \] ### Final Answer The final answer is: \[ \boxed{-\frac{2\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Find the solution set of the equation,3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Number of integral solutions of the equation 2sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=3(pi)/(2) is

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The number of solution (s) of the equation sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2) is/are

The number of solution of the equation 2sin^(-1)((2x)/(1+x^(2)))-pi x^(3)=0 is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let S={x:x in IR and (sqrt(3)+sqrt(2))^(x^(2)-4)+(sqrt(3)-sqrt(2))^(x^...

    Text Solution

    |

  2. The mean and variance of 5 observations are 5 and 8 respectively. If 3...

    Text Solution

    |

  3. Let S be the set of all solutions of the equation cos^(-1)(2x)-2cos^(-...

    Text Solution

    |

  4. The value of (1)/(1!50!)+(1)/(3!48!)+(1)/(5!46!)+......+(1)/(49!2!)+(1...

    Text Solution

    |

  5. lim(n rarr oo)((1)/(1+n)+(1)/(2+n)+(1)/(3+n)+....+(1)/(2n)) is equal t...

    Text Solution

    |

  6. If the orthocentre of the triangle,whose vertices are (1,2),(2,3) and ...

    Text Solution

    |

  7. Let the image of the point P(2,-1,3) in the plane x+2y-z=0 be Q.Then t...

    Text Solution

    |

  8. Let S denote the set of all real values of lambda such that the system...

    Text Solution

    |

  9. Let f(x)=|[1+sin^(2)x,cos^(2)x,sin2x],[sin^(2)x,1+cos^(2)x,sin2x],[sin...

    Text Solution

    |

  10. The combined equation of the two lines ax+by+c=0 and a'x+b'y+c'=0 can ...

    Text Solution

    |

  11. For a triangle ABC,the value of cos2A+cos2B+cos2C is least. If its inr...

    Text Solution

    |

  12. If y=y(x) is the solution curve of the differential equation (dy)/(dx)...

    Text Solution

    |

  13. If the centre and radius of the circle |(z-2)/(z-3)|=2 are respectivel...

    Text Solution

    |

  14. In a binomial distribution B(n, p), the sum and the product of the mea...

    Text Solution

    |

  15. The area enclosed by the closed curve C given by the differential equa...

    Text Solution

    |

  16. The negation of the expression q vv((~q)^^p) is equivalent to

    Text Solution

    |

  17. If int(0)^(1)(x^(21)+x^(14)+x^(7))(2x^(14)+3x^(7)+6)^(1/7)dx=(1)/(l)(1...

    Text Solution

    |

  18. Let vec v=alphahat i+2hat j-3hat k,vec w=2 alphahat i+hat j-hat k and ...

    Text Solution

    |

  19. The number of 3 -digit numbers,that are divisible by 2 or 3 but not di...

    Text Solution

    |

  20. Let A be the area bounded by the curve y=x|x-3|,the x -axis and the or...

    Text Solution

    |