Home
Class 12
MATHS
The sum sum(n=1)^oo(2n^(2)+3n+4)/((2n)!)...

The sum `sum_(n=1)^oo(2n^(2)+3n+4)/((2n)!)` is equal to

A

`(11e)/2+7/(2e)-4`

B

`(11e)/2+7/(2e)`

C

`(13e)/4+5/(4e)-4`

D

`(13e)/4+5/(4e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite sum: \[ S = \sum_{n=1}^{\infty} \frac{2n^2 + 3n + 4}{(2n)!} \] ### Step 1: Break down the sum We can separate the sum into three distinct parts: \[ S = \sum_{n=1}^{\infty} \frac{2n^2}{(2n)!} + \sum_{n=1}^{\infty} \frac{3n}{(2n)!} + \sum_{n=1}^{\infty} \frac{4}{(2n)!} \] ### Step 2: Evaluate each part #### Part 1: Evaluate \(\sum_{n=1}^{\infty} \frac{2n^2}{(2n)!}\) Using the identity \(n^2 = n(n-1) + n\): \[ \sum_{n=1}^{\infty} \frac{2n^2}{(2n)!} = 2\sum_{n=1}^{\infty} \frac{n(n-1)}{(2n)!} + 2\sum_{n=1}^{\infty} \frac{n}{(2n)!} \] The first sum can be rewritten using the factorial property: \[ \sum_{n=1}^{\infty} \frac{n(n-1)}{(2n)!} = \sum_{n=1}^{\infty} \frac{1}{(2n-2)!} = \frac{1}{2}\sum_{m=0}^{\infty} \frac{1}{m!} = \frac{1}{2} e \] The second sum: \[ \sum_{n=1}^{\infty} \frac{n}{(2n)!} = \frac{1}{2}\sum_{m=0}^{\infty} \frac{1}{(2m-1)!} = \frac{1}{2} \cdot e \] Combining these gives: \[ \sum_{n=1}^{\infty} \frac{2n^2}{(2n)!} = 2 \left( \frac{1}{2} e + \frac{1}{2} e \right) = 2e \] #### Part 2: Evaluate \(\sum_{n=1}^{\infty} \frac{3n}{(2n)!}\) Using the same approach as above: \[ \sum_{n=1}^{\infty} \frac{3n}{(2n)!} = 3 \cdot \frac{1}{2} e = \frac{3}{2} e \] #### Part 3: Evaluate \(\sum_{n=1}^{\infty} \frac{4}{(2n)!}\) This sum can be evaluated directly: \[ \sum_{n=1}^{\infty} \frac{4}{(2n)!} = 4 \cdot \frac{1}{2} e = 2e \] ### Step 3: Combine all parts Now we can combine all the parts: \[ S = 2e + \frac{3}{2} e + 2e = 6.5 e = \frac{13}{2} e \] ### Final Result Thus, the sum \(S\) is equal to: \[ \frac{13}{2} e \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

The sum of the series sum_(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

sum_(n=1)^oo (n^2+6n+10)/((2n+1)!)

The sum sum_(n=1)^(oo)tan^(-1)((3)/(n^(2)+n-1)) is equal to

The infinite sum sum_(n=1)^(oo) ((5^(n) + 3^(n))/(5^(n))) is equal to

sum_(n=1)^(oo)(n^(2))/(n!) is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.

The sum sum_(n=1)^(oo)((n)/(n^(4)+4)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The remainder,when 19^(200)+23^(200) is divided by 49,is

    Text Solution

    |

  2. Let P(S) denote the power set of S = {1,2,3,…..,10}. Define the relati...

    Text Solution

    |

  3. The sum sum(n=1)^oo(2n^(2)+3n+4)/((2n)!) is equal to

    Text Solution

    |

  4. If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

    Text Solution

    |

  5. Let veca= 2hati -7hatj+5hat k, vecb=hati+hat k and vec c =hat i +2hat ...

    Text Solution

    |

  6. Let S ={X in R, 0 lt x lt 1 and 2 tan^(-1)((1-x)/(1+x)) =cos^(-1)((1-x...

    Text Solution

    |

  7. For the system of linear equations alpha x + y + z = 1, x + alpha y + ...

    Text Solution

    |

  8. The number of integral values of k, for which one root of the equation...

    Text Solution

    |

  9. If A (1/2)[(1,sqrt3),(-sqrt3,1)] , then

    Text Solution

    |

  10. Let vec a=5hat i -hat j -3hat k and vec b =hat i +3hat j +5hat k be tw...

    Text Solution

    |

  11. Which of the following statements is a tautology

    Text Solution

    |

  12. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  13. Let alpha x = exp(x^(beta) y ^(gamma )) be the solution of differentia...

    Text Solution

    |

  14. Let a, b be two real numbers such that ab lt 0. If the complex number ...

    Text Solution

    |

  15. The sum of the absolute maximum and minimum values of the function f(x...

    Text Solution

    |

  16. Let 9 = x1 lt x2 lt ……lt x7 in an A.P. with common difference d. If th...

    Text Solution

    |

  17. The value of the integral int(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx is

    Text Solution

    |

  18. Let P(x0, y0) be the point on the hyperbola 3x^2 – 4y^2 = 36 which is ...

    Text Solution

    |

  19. Two dice are thrown independently. Let A be the event that the number ...

    Text Solution

    |

  20. Let f : R – {0, 1} rarr R be a function such that f(x) + f(1/(1-x))= 1...

    Text Solution

    |