Home
Class 12
MATHS
Let veca= 2hati -7hatj+5hat k, vecb=hati...

Let `veca= 2hati -7hatj+5hat k, vecb=hati+hat k and vec c =hat i +2hat j -3hat k` be three given vectors. If `vec r` is a vector such that `vec r times vec a= vec c times vec a and vec r .vec b=0,` then `abs(vec r)` is

A

`(11)/7 sqrt2`

B

`11/7`

C

`(sqrt914)/7`

D

`(11)/5sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{r}\) given the conditions involving vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Write down the given vectors We have: \[ \vec{a} = 2\hat{i} - 7\hat{j} + 5\hat{k} \] \[ \vec{b} = \hat{i} + \hat{k} \] \[ \vec{c} = \hat{i} + 2\hat{j} - 3\hat{k} \] ### Step 2: Set up the equations We know that: \[ \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \] This implies: \[ \vec{r} - \vec{c} = \lambda \vec{a} \] for some scalar \(\lambda\). Thus, we can express \(\vec{r}\) as: \[ \vec{r} = \vec{c} + \lambda \vec{a} \] ### Step 3: Use the second condition The second condition given is: \[ \vec{r} \cdot \vec{b} = 0 \] Substituting \(\vec{r}\) into this equation gives: \[ (\vec{c} + \lambda \vec{a}) \cdot \vec{b} = 0 \] ### Step 4: Calculate \(\vec{c} \cdot \vec{b}\) and \(\vec{a} \cdot \vec{b}\) Calculating \(\vec{c} \cdot \vec{b}\): \[ \vec{c} \cdot \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) \cdot (\hat{i} + \hat{k}) = 1 \cdot 1 + 2 \cdot 0 - 3 \cdot 1 = 1 - 3 = -2 \] Calculating \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (2\hat{i} - 7\hat{j} + 5\hat{k}) \cdot (\hat{i} + \hat{k}) = 2 \cdot 1 + (-7) \cdot 0 + 5 \cdot 1 = 2 + 5 = 7 \] ### Step 5: Substitute back into the equation Now substituting back into the equation: \[ -2 + \lambda \cdot 7 = 0 \] Solving for \(\lambda\): \[ \lambda \cdot 7 = 2 \implies \lambda = \frac{2}{7} \] ### Step 6: Substitute \(\lambda\) back into \(\vec{r}\) Now substituting \(\lambda\) back into the expression for \(\vec{r}\): \[ \vec{r} = \vec{c} + \frac{2}{7} \vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right) + \frac{2}{7}(2\hat{i} - 7\hat{j} + 5\hat{k}) \] Calculating this gives: \[ \vec{r} = \hat{i} + 2\hat{j} - 3\hat{k} + \left(\frac{4}{7}\hat{i} - 2\hat{j} + \frac{10}{7}\hat{k}\right) \] Combining the components: \[ \vec{r} = \left(1 + \frac{4}{7}\right)\hat{i} + \left(2 - 2\right)\hat{j} + \left(-3 + \frac{10}{7}\right)\hat{k} \] \[ = \frac{11}{7}\hat{i} + 0\hat{j} + \left(-\frac{21}{7} + \frac{10}{7}\right)\hat{k} = \frac{11}{7}\hat{i} - \frac{11}{7}\hat{k} \] ### Step 7: Calculate the magnitude of \(\vec{r}\) The magnitude of \(\vec{r}\) is given by: \[ |\vec{r}| = \sqrt{\left(\frac{11}{7}\right)^2 + 0^2 + \left(-\frac{11}{7}\right)^2} = \sqrt{\frac{121}{49} + \frac{121}{49}} = \sqrt{\frac{242}{49}} = \frac{\sqrt{242}}{7} = \frac{11\sqrt{2}}{7} \] ### Final Answer Thus, the magnitude of \(\vec{r}\) is: \[ |\vec{r}| = \frac{11\sqrt{2}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

vec a=-hat i-hat k,vec b=-hat i+hat j and vec c=hat i+2hat j+3k be three given vectors.If vec r be a vector such that vec r xxvec b=vec c xxvec b and vec r*vec a=0, then the value of vec r.vec b is

Let vec a=2 hat i+ hat k , vec b= hat i+ hat j+ hat ka n d vec c=4 hat i-3 hat j+7 hat k be three vectors. Find vector vec r which satisfies vec rxx vec b= vec cxx vec ba n d vec rdot vec a=0.

If vec a=hat i+2hat j-2hat k,vec b=2hat i-hat j+hat k and vec c=hat i+3hat j-hat k then find vec a xx(vec b xxvec c)

If vec a=hat j-hat k and vec c=hat i+hat j+hat k are given vectors,and vec b is such that a vec a*vec b=3 and vec a xxvec b+vec c=0 then is equal to

If vec a=hat i-2hat j+hat k,vec b=2hat i+hat j-hat k and vec C=3hat i+5hat j+2hat k then find the value of vec a xx(vec b xxvec c)

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

If vec a=hat i+2hat j+hat k,vec b=2hat i+hat j and vec c=3hat i-4hat j-5hat k then find a unit vector perpendicular to both of the vector (vec a-vec b) and (vec c-vec b)

Let vec a=hat j-hat k and vec c=hat i-hat j-hat k. Then the vector b satisfying vec axvec b+vec c=0 and vec a*vec b=3, is

vec a=hat i+hat j+hat k,vec b=2hat i-hat j+3hat k and vec c=hat i-2hat j+hat k find a unit vector in a direction parallel to vector (2vec a-vec b+3vec c)

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The sum sum(n=1)^oo(2n^(2)+3n+4)/((2n)!) is equal to

    Text Solution

    |

  2. If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

    Text Solution

    |

  3. Let veca= 2hati -7hatj+5hat k, vecb=hati+hat k and vec c =hat i +2hat ...

    Text Solution

    |

  4. Let S ={X in R, 0 lt x lt 1 and 2 tan^(-1)((1-x)/(1+x)) =cos^(-1)((1-x...

    Text Solution

    |

  5. For the system of linear equations alpha x + y + z = 1, x + alpha y + ...

    Text Solution

    |

  6. The number of integral values of k, for which one root of the equation...

    Text Solution

    |

  7. If A (1/2)[(1,sqrt3),(-sqrt3,1)] , then

    Text Solution

    |

  8. Let vec a=5hat i -hat j -3hat k and vec b =hat i +3hat j +5hat k be tw...

    Text Solution

    |

  9. Which of the following statements is a tautology

    Text Solution

    |

  10. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  11. Let alpha x = exp(x^(beta) y ^(gamma )) be the solution of differentia...

    Text Solution

    |

  12. Let a, b be two real numbers such that ab lt 0. If the complex number ...

    Text Solution

    |

  13. The sum of the absolute maximum and minimum values of the function f(x...

    Text Solution

    |

  14. Let 9 = x1 lt x2 lt ……lt x7 in an A.P. with common difference d. If th...

    Text Solution

    |

  15. The value of the integral int(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx is

    Text Solution

    |

  16. Let P(x0, y0) be the point on the hyperbola 3x^2 – 4y^2 = 36 which is ...

    Text Solution

    |

  17. Two dice are thrown independently. Let A be the event that the number ...

    Text Solution

    |

  18. Let f : R – {0, 1} rarr R be a function such that f(x) + f(1/(1-x))= 1...

    Text Solution

    |

  19. Let the plane P pass through the intersection of the planes 2x + 3y – ...

    Text Solution

    |

  20. The total number of six digit numbers, formed using the digits 4, 5, 9...

    Text Solution

    |