Home
Class 12
MATHS
Let S ={X in R, 0 lt x lt 1 and 2 tan^(-...

Let `S ={X in R, 0 lt x lt 1 and 2 tan^(-1)((1-x)/(1+x)) =cos^(-1)((1-x)^2/(1+x)^2)}`. If `n(S)` denotes the number of elements is S then

A

`n(S) = 2` and only one element in S is less than `1/2` .

B

` n(S) = 1` and the element in S is less than `1/2.`

C

`n(S) = 1` and the element in S is more than `1/2 .`

D

`n(S)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation: \[ S = \{ x \in \mathbb{R} : 0 < x < 1 \text{ and } 2 \tan^{-1}\left(\frac{1-x}{1+x}\right) = \cos^{-1}\left(\frac{(1-x)^2}{(1+x)^2}\right) \} \] ### Step 1: Rewrite the equation using trigonometric identities Using the identity for the tangent of a difference, we can rewrite the left-hand side: \[ 2 \tan^{-1}\left(\frac{1-x}{1+x}\right) = \tan^{-1}\left(\frac{2(1-x)}{1+x}\right) \] The right-hand side can be simplified using the cosine double angle identity: \[ \cos^{-1}\left(\frac{(1-x)^2}{(1+x)^2}\right) = \cos^{-1}\left(\cos(2\theta)\right) \quad \text{where } \theta = \tan^{-1}(x) \] ### Step 2: Set up the equation From the above, we can set up the equation: \[ \tan^{-1}\left(\frac{2(1-x)}{1+x}\right) = \frac{\pi}{2} - 2\theta \] ### Step 3: Solve for \( x \) Now, we can solve for \( x \) by substituting \( x = \tan(\theta) \): \[ \tan^{-1}\left(\frac{2(1-\tan(\theta))}{1+\tan(\theta)}\right) = \frac{\pi}{2} - 2\tan^{-1}(\tan(\theta)) \] This simplifies to: \[ \frac{2(1-\tan(\theta))}{1+\tan(\theta)} = \tan\left(\frac{\pi}{2} - 2\tan^{-1}(\tan(\theta))\right) \] ### Step 4: Find the values of \( x \) From the equation, we can find the specific values of \( x \) that satisfy the condition \( 0 < x < 1 \). We can use the known value of \( \tan(\frac{\pi}{8}) \): \[ x = \tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1 \] ### Step 5: Check the range of \( x \) Now, we need to check if \( \sqrt{2} - 1 \) lies within the interval \( (0, 1) \): \[ \sqrt{2} \approx 1.414 \implies \sqrt{2} - 1 \approx 0.414 \] Since \( 0 < \sqrt{2} - 1 < 1 \), we conclude that there is one solution in the interval. ### Conclusion Thus, the number of elements in the set \( S \) is: \[ n(S) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If -1lt x lt 0 then tan^(-1) x equals

tan^(-1).(x(x+1)+1)/((x+1)-x) =tan^(-1) (x^(2) +x^+1) = R.H.S

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

Solve for x : tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x))=pi/3, -1 lt x lt 1 .

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

    Text Solution

    |

  2. Let veca= 2hati -7hatj+5hat k, vecb=hati+hat k and vec c =hat i +2hat ...

    Text Solution

    |

  3. Let S ={X in R, 0 lt x lt 1 and 2 tan^(-1)((1-x)/(1+x)) =cos^(-1)((1-x...

    Text Solution

    |

  4. For the system of linear equations alpha x + y + z = 1, x + alpha y + ...

    Text Solution

    |

  5. The number of integral values of k, for which one root of the equation...

    Text Solution

    |

  6. If A (1/2)[(1,sqrt3),(-sqrt3,1)] , then

    Text Solution

    |

  7. Let vec a=5hat i -hat j -3hat k and vec b =hat i +3hat j +5hat k be tw...

    Text Solution

    |

  8. Which of the following statements is a tautology

    Text Solution

    |

  9. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  10. Let alpha x = exp(x^(beta) y ^(gamma )) be the solution of differentia...

    Text Solution

    |

  11. Let a, b be two real numbers such that ab lt 0. If the complex number ...

    Text Solution

    |

  12. The sum of the absolute maximum and minimum values of the function f(x...

    Text Solution

    |

  13. Let 9 = x1 lt x2 lt ……lt x7 in an A.P. with common difference d. If th...

    Text Solution

    |

  14. The value of the integral int(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx is

    Text Solution

    |

  15. Let P(x0, y0) be the point on the hyperbola 3x^2 – 4y^2 = 36 which is ...

    Text Solution

    |

  16. Two dice are thrown independently. Let A be the event that the number ...

    Text Solution

    |

  17. Let f : R – {0, 1} rarr R be a function such that f(x) + f(1/(1-x))= 1...

    Text Solution

    |

  18. Let the plane P pass through the intersection of the planes 2x + 3y – ...

    Text Solution

    |

  19. The total number of six digit numbers, formed using the digits 4, 5, 9...

    Text Solution

    |

  20. Number of integral solutions to the equation x + y + z = 21 where x ge...

    Text Solution

    |