Home
Class 12
MATHS
If A (1/2)[(1,sqrt3),(-sqrt3,1)] , then...

If `A (1/2)[(1,sqrt3),(-sqrt3,1)] `, then

A

` A^(30) – A^(25) = 2I`

B

`A^(30) = A^(25)`

C

`A^(30) + A^(25) – A = I`

D

`A^(30) + A^(25) + A = I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) given by: \[ A = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \] ### Step 1: Identify the Matrix First, we can rewrite the matrix \( A \): \[ A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \] ### Step 2: Recognize the Rotation Matrix Notice that this matrix resembles a rotation matrix. The standard form of a 2D rotation matrix is: \[ R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \] Comparing, we can identify that: \[ \cos(\theta) = \frac{1}{2}, \quad \sin(\theta) = \frac{\sqrt{3}}{2} \] This corresponds to \( \theta = \frac{\pi}{3} \) or \( 60^\circ \). ### Step 3: Calculate \( A^2 \) To find \( A^2 \), we can use the property of rotation matrices: \[ A^2 = R(2\theta) = R\left(2 \cdot \frac{\pi}{3}\right) = R\left(\frac{2\pi}{3}\right) \] Calculating \( A^2 \): \[ A^2 = \begin{pmatrix} \cos\left(\frac{2\pi}{3}\right) & -\sin\left(\frac{2\pi}{3}\right) \\ \sin\left(\frac{2\pi}{3}\right) & \cos\left(\frac{2\pi}{3}\right) \end{pmatrix} \] Using the values: \[ \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ A^2 = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 4: Generalize \( A^n \) Using the rotation property, we can generalize: \[ A^n = R(n \cdot \frac{\pi}{3}) = \begin{pmatrix} \cos\left(n \cdot \frac{\pi}{3}\right) & -\sin\left(n \cdot \frac{\pi}{3}\right) \\ \sin\left(n \cdot \frac{\pi}{3}\right) & \cos\left(n \cdot \frac{\pi}{3}\right) \end{pmatrix} \] ### Step 5: Find \( A^{30} \) and \( A^{25} \) For \( A^{30} \): \[ A^{30} = R\left(30 \cdot \frac{\pi}{3}\right) = R(10\pi) = I \quad (\text{Identity matrix}) \] For \( A^{25} \): \[ A^{25} = R\left(25 \cdot \frac{\pi}{3}\right) = R\left(\frac{25\pi}{3}\right) = R\left(8\pi + \frac{\pi}{3}\right) = R\left(\frac{\pi}{3}\right) \] Thus, \[ A^{25} = A \] ### Step 6: Solve the Equation We need to solve \( A^{25} - A = 0 \): \[ A - A = 0 \quad \Rightarrow \quad 0 = 0 \] ### Conclusion Thus, the final result is: \[ A^{30} + A^{25} - A = I \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

1+2sqrt(3)-1sqrt(3)

If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1)) then A^(-1)- A^(2) is equal to a

If a=sin^(-1) (-sqrt2/2)+cos^(-1) (-1/2) and b=tan^(-1) (-sqrt3)-cot^(-1) (-1/sqrt3) , then

1/(1-sqrt2-sqrt3)=

1/(1+ sqrt2 + sqrt3)

If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) is equal to

Find the angle between two lines whose direction ratios are proportional to 1,1,2 and (sqrt(3)-1),(-sqrt(3)-1),4

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. For the system of linear equations alpha x + y + z = 1, x + alpha y + ...

    Text Solution

    |

  2. The number of integral values of k, for which one root of the equation...

    Text Solution

    |

  3. If A (1/2)[(1,sqrt3),(-sqrt3,1)] , then

    Text Solution

    |

  4. Let vec a=5hat i -hat j -3hat k and vec b =hat i +3hat j +5hat k be tw...

    Text Solution

    |

  5. Which of the following statements is a tautology

    Text Solution

    |

  6. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  7. Let alpha x = exp(x^(beta) y ^(gamma )) be the solution of differentia...

    Text Solution

    |

  8. Let a, b be two real numbers such that ab lt 0. If the complex number ...

    Text Solution

    |

  9. The sum of the absolute maximum and minimum values of the function f(x...

    Text Solution

    |

  10. Let 9 = x1 lt x2 lt ……lt x7 in an A.P. with common difference d. If th...

    Text Solution

    |

  11. The value of the integral int(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx is

    Text Solution

    |

  12. Let P(x0, y0) be the point on the hyperbola 3x^2 – 4y^2 = 36 which is ...

    Text Solution

    |

  13. Two dice are thrown independently. Let A be the event that the number ...

    Text Solution

    |

  14. Let f : R – {0, 1} rarr R be a function such that f(x) + f(1/(1-x))= 1...

    Text Solution

    |

  15. Let the plane P pass through the intersection of the planes 2x + 3y – ...

    Text Solution

    |

  16. The total number of six digit numbers, formed using the digits 4, 5, 9...

    Text Solution

    |

  17. Number of integral solutions to the equation x + y + z = 21 where x ge...

    Text Solution

    |

  18. Let the sixth term in the binomial expansion of (sqrt(2^(log2(10-3^x))...

    Text Solution

    |

  19. If the term without x in the expansion of (x^(2/3)+alpha/x^3)^22 is 73...

    Text Solution

    |

  20. The point of intersection C of the plane 8x + y + 2z = 0 and the line ...

    Text Solution

    |