Home
Class 12
MATHS
The value of the integral int(-pi/4)^(pi...

The value of the integral `int_(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx ` is

A

`pi^2/(12 sqrt3)`

B

`pi^2/(6)`

C

`pi^2/(3 sqrt3)`

D

`pi^2/(6sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx, \] we will use the property of definite integrals and the symmetry of the function involved. ### Step 1: Substitute \(x\) with \(-x\) We start by substituting \(x\) with \(-x\): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{-x + \frac{\pi}{4}}{2 - \cos(-2x)} \, dx. \] Since \(\cos(-2x) = \cos(2x)\), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{-x + \frac{\pi}{4}}{2 - \cos 2x} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx\) 2. \(I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{-x + \frac{\pi}{4}}{2 - \cos 2x} \, dx\) Adding these two expressions together: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{x + \frac{\pi}{4}}{2 - \cos 2x} + \frac{-x + \frac{\pi}{4}}{2 - \cos 2x} \right) \, dx. \] This simplifies to: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{2 \cdot \frac{\pi}{4}}{2 - \cos 2x} \, dx = \frac{\pi}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2 - \cos 2x} \, dx. \] ### Step 3: Evaluate the integral Now we need to evaluate the integral \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2 - \cos 2x} \, dx. \] Using the substitution \(u = 2x\), we have \(du = 2dx\) or \(dx = \frac{du}{2}\). The limits change from \(x = -\frac{\pi}{4}\) to \(x = \frac{\pi}{4}\) which corresponds to \(u = -\frac{\pi}{2}\) to \(u = \frac{\pi}{2}\): \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2 - \cos 2x} \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2 - \cos u} \, du. \] ### Step 4: Solve the integral The integral \[ \int \frac{1}{2 - \cos u} \, du \] can be evaluated using standard techniques (e.g., using the Weierstrass substitution or recognizing it as a standard integral). The result of this integral is: \[ \int \frac{1}{2 - \cos u} \, du = \frac{u}{\sqrt{3}} + C. \] Evaluating from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\): \[ \left[ \frac{u}{\sqrt{3}} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\frac{\pi}{2}}{\sqrt{3}} - \left(-\frac{\frac{\pi}{2}}{\sqrt{3}}\right) = \frac{\pi}{\sqrt{3}}. \] Thus, \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2 - \cos 2x} \, dx = \frac{1}{2} \cdot \frac{\pi}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}. \] ### Step 5: Final calculation Substituting back into our expression for \(2I\): \[ 2I = \frac{\pi}{2} \cdot \frac{\pi}{2\sqrt{3}} = \frac{\pi^2}{4\sqrt{3}}. \] Thus, \[ I = \frac{\pi^2}{8\sqrt{3}}. \] ### Conclusion The value of the integral is \[ \frac{\pi^2}{8\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

Evaluate: int_(-pi/4)^( pi/4)(x+pi/4)/(2-cos2x)dx

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

int_(pi//4)^(pi//2)(dx)/((1-cos2x))

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(pi//2)^(pi//2)(x^2ln(pi+x)/(pi-x))cosx\ dx is a. 0 b. (pi^2)/2-4 c. (pi^2)/2+4 d. (pi^2)/2

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

int_(-(pi)/(4))^((pi)/(4))(dx)/(1+cos2x) is

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  2. Let alpha x = exp(x^(beta) y ^(gamma )) be the solution of differentia...

    Text Solution

    |

  3. Let a, b be two real numbers such that ab lt 0. If the complex number ...

    Text Solution

    |

  4. The sum of the absolute maximum and minimum values of the function f(x...

    Text Solution

    |

  5. Let 9 = x1 lt x2 lt ……lt x7 in an A.P. with common difference d. If th...

    Text Solution

    |

  6. The value of the integral int(-pi/4)^(pi/4)(x+pi/4)/(2-cos2x)dx is

    Text Solution

    |

  7. Let P(x0, y0) be the point on the hyperbola 3x^2 – 4y^2 = 36 which is ...

    Text Solution

    |

  8. Two dice are thrown independently. Let A be the event that the number ...

    Text Solution

    |

  9. Let f : R – {0, 1} rarr R be a function such that f(x) + f(1/(1-x))= 1...

    Text Solution

    |

  10. Let the plane P pass through the intersection of the planes 2x + 3y – ...

    Text Solution

    |

  11. The total number of six digit numbers, formed using the digits 4, 5, 9...

    Text Solution

    |

  12. Number of integral solutions to the equation x + y + z = 21 where x ge...

    Text Solution

    |

  13. Let the sixth term in the binomial expansion of (sqrt(2^(log2(10-3^x))...

    Text Solution

    |

  14. If the term without x in the expansion of (x^(2/3)+alpha/x^3)^22 is 73...

    Text Solution

    |

  15. The point of intersection C of the plane 8x + y + 2z = 0 and the line ...

    Text Solution

    |

  16. The sum of common terms of the following three arithmetic progressions...

    Text Solution

    |

  17. If int(0)^(pi)(5^(cosx)(1+cosxcos3x+cos^(2)x+cos^(3)xcos3x)dx)/(1+5^(c...

    Text Solution

    |

  18. If the x-intercept of a focal chord of the parabola y^2 = 8x + 4y + 4 ...

    Text Solution

    |

  19. Let alpha x + beta y + gamma z = 1 be the equation of a plane passing ...

    Text Solution

    |

  20. The line x = 8 is the directrix of the ellipse E : (x^2)/(a^2)+(y^2)/(...

    Text Solution

    |