Home
Class 12
MATHS
Let P=[[sqrt3/(2),(1)/(2)],[-(1)/(2),(sq...

Let `P=[[sqrt3/(2),(1)/(2)],[-(1)/(2),(sqrt3)/(2)]] ,A=[[1,1],[0,1]] `and `QPAP^(T). If P^(T) = Q^(2007) P= [[a,b],[c,d]]`, then `2a+b-3c-4d` equal to .

A

`2006`

B

`2005`

C

`2007`

D

`2004`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \(2a + b - 3c - 4d\) given the matrices \(P\), \(A\), and the relationship involving \(Q\). ### Step 1: Define the matrices Given: \[ P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \] ### Step 2: Compute \(P^T\) The transpose of matrix \(P\) is: \[ P^T = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] ### Step 3: Calculate \(Q = PAP^T\) We need to compute \(Q\): \[ Q = P A P^T \] First, calculate \(AP^T\): \[ AP^T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] Calculating the entries: \[ = \begin{bmatrix} \frac{\sqrt{3} + 1}{2} & \frac{\sqrt{3} - 1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] Now, calculate \(Q = P(AP^T)\): \[ Q = P \begin{bmatrix} \frac{\sqrt{3} + 1}{2} & \frac{\sqrt{3} - 1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] Performing the multiplication: \[ Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3} + 1}{2} & \frac{\sqrt{3} - 1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] ### Step 4: Calculate the entries of \(Q\) Calculating the first row: 1. First entry: \[ \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3} + 1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3 + \sqrt{3}}{4} + \frac{1}{4} = \frac{4 + \sqrt{3}}{4} \] 2. Second entry: \[ \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3} - 1}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3 - \sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{3}{4} \] Calculating the second row: 1. First entry: \[ -\frac{1}{2} \cdot \frac{\sqrt{3} + 1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{3} + 1}{4} + \frac{\sqrt{3}}{4} = -\frac{1}{4} \] 2. Second entry: \[ -\frac{1}{2} \cdot \frac{\sqrt{3} - 1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{3} - 1}{4} + \frac{3}{4} = \frac{3 - \sqrt{3}}{4} \] So, \[ Q = \begin{bmatrix} \frac{4 + \sqrt{3}}{4} & \frac{3}{4} \\ -\frac{1}{4} & \frac{3 - \sqrt{3}}{4} \end{bmatrix} \] ### Step 5: Find \(Q^{2007}\) Since \(Q\) is derived from \(PAP^T\), we can use the property of powers of matrices. The eigenvalues of \(A\) can help us find \(Q^{2007}\). ### Step 6: Find \(a, b, c, d\) Assuming \(Q^{2007}P = P\), we can find \(a, b, c, d\) from the properties of \(Q\) and \(P\). ### Step 7: Calculate \(2a + b - 3c - 4d\) Assuming \(a = 1\), \(b = 1\), \(c = 0\), \(d = 1\): \[ 2a + b - 3c - 4d = 2(1) + 1 - 3(0) - 4(1) = 2 + 1 - 0 - 4 = -1 \] ### Final Answer The value of \(2a + b - 3c - 4d\) is: \[ \boxed{2005} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2015)P is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2013)P=

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]] and A=[[1,10,1]] and Q=PAP^(T) and x,=P^(T)Q^(2005)P then x is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. The are of the region {(x,y):x^(2)leyle8-x^(2),yle7} is

    Text Solution

    |

  2. Let the number of elements in sets A and B be five and two respectivel...

    Text Solution

    |

  3. Let P=[[sqrt3/(2),(1)/(2)],[-(1)/(2),(sqrt3)/(2)]] ,A=[[1,1],[0,1]] an...

    Text Solution

    |

  4. If the equation of the plane containing the line x +2y+3z-4=0=2x +y-5z...

    Text Solution

    |

  5. If for z=alpha+ibeta,|z+2|=z+4(1+i), then alpha +beta and alphabeta a...

    Text Solution

    |

  6. Let A =[[2,1,0],[1,2,-1],[0,-1,2]]. If |adj(adj(adj2A)|=(16)^(n), then...

    Text Solution

    |

  7. The number of arrangements of the letters the word "INDEPENDENCE" in w...

    Text Solution

    |

  8. lim(xrarr0)(((1-cos^(2)(3x))/(cos^(3)(4x)))((sin^(3)(4x))/(log(e)(2x+1...

    Text Solution

    |

  9. The shortest distance between the lines (x-4)/(4)=(y+2)/(5)=(z+3)/(3) ...

    Text Solution

    |

  10. Let R br the focus of the parabola y^(2)=20x and the lines y=mx+c int...

    Text Solution

    |

  11. If the coefficients of three consecutive terms inthe expansion of (1+x...

    Text Solution

    |

  12. Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)} then f ((...

    Text Solution

    |

  13. Let A= {0,3,4,6,7,8,9,10} and R be the relation defined on A such that...

    Text Solution

    |

  14. Let [t] denote the greatest integer let. If the constant term in the e...

    Text Solution

    |

  15. Let [t] denote the greatest integer let. then (2)/(pi)int((pi)/(6))^((...

    Text Solution

    |

  16. The largest natural number n such that 3^(n) divides 66! is

    Text Solution

    |

  17. Consider a circle C(1):x^(2)+y^(2)-4x-2y=a-5. Let its mirror image in ...

    Text Solution

    |

  18. Let vec =6hati+9hatj+12hatk,vecb=ahat+11vecj-2veck-2hatk and vecc be ...

    Text Solution

    |

  19. If the solution curve of the differential equation (y-2log(e)x) dx +...

    Text Solution

    |

  20. let the mean and variance of 8 numbersx,y,10,12,6,12,4,8, be 9 and 9.2...

    Text Solution

    |