Home
Class 12
MATHS
If for z=alpha+ibeta,|z+2|=z+4(1+i), the...

If for `z=alpha+ibeta,|z+2|=z+4(1+i)`, then `alpha +beta ` and `alphabeta` are the roots of the equation.

A

`x^(2)+2x-3=0`

B

`x^(2)+3x-4=0`

C

`x^(2)+7x+12=0`

D

`x^(2)+x-12=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: \[ |z + 2| = z + 4(1 + i) \] Let \( z = \alpha + i\beta \), where \( \alpha \) and \( \beta \) are real numbers. We can rewrite the equation as follows: 1. **Substitute \( z \)**: \[ |(\alpha + i\beta) + 2| = (\alpha + i\beta) + 4(1 + i) \] This simplifies to: \[ |(\alpha + 2) + i\beta| = (\alpha + 4) + i(\beta + 4) \] 2. **Calculate the modulus**: The modulus on the left side is: \[ \sqrt{(\alpha + 2)^2 + \beta^2} \] The right side can be expressed as: \[ \sqrt{(\alpha + 4)^2 + (\beta + 4)^2} \] 3. **Set the two sides equal**: \[ \sqrt{(\alpha + 2)^2 + \beta^2} = \sqrt{(\alpha + 4)^2 + (\beta + 4)^2} \] 4. **Square both sides**: \[ (\alpha + 2)^2 + \beta^2 = (\alpha + 4)^2 + (\beta + 4)^2 \] 5. **Expand both sides**: Left side: \[ \alpha^2 + 4\alpha + 4 + \beta^2 \] Right side: \[ \alpha^2 + 8\alpha + 16 + \beta^2 + 8\beta + 16 \] 6. **Combine like terms**: \[ \alpha^2 + 4\alpha + 4 + \beta^2 = \alpha^2 + 8\alpha + 16 + \beta^2 + 8\beta + 16 \] 7. **Cancel \(\alpha^2\) and \(\beta^2\)**: \[ 4\alpha + 4 = 8\alpha + 8\beta + 32 \] 8. **Rearrange the equation**: \[ 0 = 4\alpha + 8\beta + 28 \] This simplifies to: \[ 4\alpha + 8\beta = -28 \] Dividing everything by 4: \[ \alpha + 2\beta = -7 \quad \text{(Equation 1)} \] 9. **From the right side, equate the imaginary parts**: We have: \[ \beta + 4 = 0 \implies \beta = -4 \quad \text{(Equation 2)} \] 10. **Substitute \(\beta\) into Equation 1**: \[ \alpha + 2(-4) = -7 \implies \alpha - 8 = -7 \implies \alpha = 1 \] 11. **Now we have the values**: \(\alpha = 1\) and \(\beta = -4\). 12. **Calculate \(\alpha + \beta\) and \(\alpha \beta\)**: \[ \alpha + \beta = 1 - 4 = -3 \] \[ \alpha \beta = 1 \cdot (-4) = -4 \] 13. **Form the quadratic equation**: The roots are \(-3\) and \(-4\). The quadratic equation can be formed as: \[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \] \[ x^2 + 3x - 4 = 0 \] Thus, the final equation is: \[ x^2 + 3x - 4 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta=90^@ and alpha:beta=2:1 then sinalpha:sinbeta=

A nucleus with atomic number Z (Z = 92) emits the following particles in a sequence alpha, beta^(-), alpha, alpha, beta^(-), beta^(+), alpha, beta^(-), alpha, beta^(+) . The atomic number of the resulting nucleus is

If alpha, beta are roots of a quadratic equation such that alpha^2+beta^2=9 and alphabeta=8 , then the quadratic equation is?

Find the centre and radius of the circle formed by all thepoints represented by z=x+iy satisfying the relation |(z-alpha)/(z-beta)|=k(k!=1) where alpha and beta are the constant complex numbers given by alpha=alpha_(1)+i alpha_(2),beta=beta_(1)+i beta_(2)

If z_(1),z_(2),z_(3) are the vertices of the o+ABC on the complex plane and are also the roots of the equation z^(3)-3az^(2)+3 beta z+gamma=0 then the condition for the o+ABC to be equilateral triangle is: alpha^(2)=beta( b) alpha=beta^(2)alpha^(2)=3 beta(d)alpha=3 beta^(2)

If alpha be the real cube root of and beta,gamma be the complex cube roots of m, a real positive number,then for any x,y,z show that (x beta+y gamma+z alpha)/(x gamma+y alpha+z beta)=omega^(2), where omega is a complex cube root of unity.

If abs(z+1)=alphaZ+beta(1+i) then z=1/2-2i then the value of abs(alpha+beta) is equal to, where alpha,betainR

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let P=[[sqrt3/(2),(1)/(2)],[-(1)/(2),(sqrt3)/(2)]] ,A=[[1,1],[0,1]] an...

    Text Solution

    |

  2. If the equation of the plane containing the line x +2y+3z-4=0=2x +y-5z...

    Text Solution

    |

  3. If for z=alpha+ibeta,|z+2|=z+4(1+i), then alpha +beta and alphabeta a...

    Text Solution

    |

  4. Let A =[[2,1,0],[1,2,-1],[0,-1,2]]. If |adj(adj(adj2A)|=(16)^(n), then...

    Text Solution

    |

  5. The number of arrangements of the letters the word "INDEPENDENCE" in w...

    Text Solution

    |

  6. lim(xrarr0)(((1-cos^(2)(3x))/(cos^(3)(4x)))((sin^(3)(4x))/(log(e)(2x+1...

    Text Solution

    |

  7. The shortest distance between the lines (x-4)/(4)=(y+2)/(5)=(z+3)/(3) ...

    Text Solution

    |

  8. Let R br the focus of the parabola y^(2)=20x and the lines y=mx+c int...

    Text Solution

    |

  9. If the coefficients of three consecutive terms inthe expansion of (1+x...

    Text Solution

    |

  10. Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)} then f ((...

    Text Solution

    |

  11. Let A= {0,3,4,6,7,8,9,10} and R be the relation defined on A such that...

    Text Solution

    |

  12. Let [t] denote the greatest integer let. If the constant term in the e...

    Text Solution

    |

  13. Let [t] denote the greatest integer let. then (2)/(pi)int((pi)/(6))^((...

    Text Solution

    |

  14. The largest natural number n such that 3^(n) divides 66! is

    Text Solution

    |

  15. Consider a circle C(1):x^(2)+y^(2)-4x-2y=a-5. Let its mirror image in ...

    Text Solution

    |

  16. Let vec =6hati+9hatj+12hatk,vecb=ahat+11vecj-2veck-2hatk and vecc be ...

    Text Solution

    |

  17. If the solution curve of the differential equation (y-2log(e)x) dx +...

    Text Solution

    |

  18. let the mean and variance of 8 numbersx,y,10,12,6,12,4,8, be 9 and 9.2...

    Text Solution

    |

  19. If alpha (a) is the greatest term in the sequence alpha (n)=(n^(3))/(n...

    Text Solution

    |

  20. Let lambda(1),lambda (2) be the values of lambda for which the points ...

    Text Solution

    |