Home
Class 12
MATHS
Let A =[[2,1,0],[1,2,-1],[0,-1,2]]. If |...

Let `A =[[2,1,0],[1,2,-1],[0,-1,2]]`. If `|adj(adj(adj2A)|=(16)^(n)`, then `n` is equal to

A

`12`

B

`10`

C

`8`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \( | \text{adj}(\text{adj}(\text{adj}(2A))) | = 16^n \). ### Step-by-Step Solution: 1. **Define the Matrix \( A \)**: \[ A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \] 2. **Calculate the Determinant of \( A \)**: We can calculate the determinant \( |A| \) using the formula for the determinant of a 3x3 matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \). For our matrix: \[ |A| = 2 \cdot (2 \cdot 2 - (-1) \cdot (-1)) - 1 \cdot (1 \cdot 2 - (-1) \cdot 0) + 0 \cdot (1 \cdot (-1) - 2 \cdot 0) \] \[ = 2 \cdot (4 - 1) - 1 \cdot (2 - 0) + 0 \] \[ = 2 \cdot 3 - 2 = 6 - 2 = 4 \] Thus, \( |A| = 4 \). 3. **Calculate the Determinant of \( 2A \)**: The determinant of a scalar multiple of a matrix is given by: \[ |kA| = k^n |A| \] where \( n \) is the order of the matrix (which is 3 in this case). Therefore: \[ |2A| = 2^3 |A| = 8 \cdot 4 = 32 \] 4. **Calculate the Determinant of \( \text{adj}(2A) \)**: The determinant of the adjugate of a matrix is given by: \[ |\text{adj}(A)| = |A|^{n-1} \] Thus: \[ |\text{adj}(2A)| = |2A|^{2} = 32^2 = 1024 \] 5. **Calculate the Determinant of \( \text{adj}(\text{adj}(2A)) \)**: Again applying the property of the adjugate: \[ |\text{adj}(\text{adj}(2A))| = |\text{adj}(A)|^{n-1} = |\text{adj}(2A)|^{2} = 1024^2 = 1048576 \] 6. **Calculate the Determinant of \( \text{adj}(\text{adj}(\text{adj}(2A))) \)**: Finally, we calculate: \[ |\text{adj}(\text{adj}(\text{adj}(2A)))| = |\text{adj}(\text{adj}(2A))|^{2} = 1048576^2 = 1099511627776 \] 7. **Express in terms of \( 16^n \)**: We know that \( 16 = 2^4 \), so: \[ 16^n = (2^4)^n = 2^{4n} \] We need to find \( n \) such that: \[ 2^{40} = 2^{4n} \] This gives us: \[ 40 = 4n \implies n = 10 \] ### Final Answer: Thus, the value of \( n \) is \( \boxed{10} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,0,0],[0,5,0],[0,0,2]] then | adj "A|=

" If "A=[[lambda,2,-1],[-1,1,2],[2,-1,1]]" and "det(adj(adj A)=(23)^(4)," then one of the possible value of "lambda(lambda>0)can be

If A=[[1,2,-1-1,1,22,-1,1]], then det (adj (adj A)

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to

A is a matrix of 3times3 ,where A=([1,2,3],[2,3,4],[4,5,8]) then the value of |(adj(adj(adj(adj A)))| is equal to 2^( k) ,the value of k-9 is

" A is a square matrix of order "3" where "A=([1,2,3],[2,3,4],[5,6,8])" then the value of "|(" adj "(adj(adj(adj A))))" is equal to "

If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C|) is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. If the equation of the plane containing the line x +2y+3z-4=0=2x +y-5z...

    Text Solution

    |

  2. If for z=alpha+ibeta,|z+2|=z+4(1+i), then alpha +beta and alphabeta a...

    Text Solution

    |

  3. Let A =[[2,1,0],[1,2,-1],[0,-1,2]]. If |adj(adj(adj2A)|=(16)^(n), then...

    Text Solution

    |

  4. The number of arrangements of the letters the word "INDEPENDENCE" in w...

    Text Solution

    |

  5. lim(xrarr0)(((1-cos^(2)(3x))/(cos^(3)(4x)))((sin^(3)(4x))/(log(e)(2x+1...

    Text Solution

    |

  6. The shortest distance between the lines (x-4)/(4)=(y+2)/(5)=(z+3)/(3) ...

    Text Solution

    |

  7. Let R br the focus of the parabola y^(2)=20x and the lines y=mx+c int...

    Text Solution

    |

  8. If the coefficients of three consecutive terms inthe expansion of (1+x...

    Text Solution

    |

  9. Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)} then f ((...

    Text Solution

    |

  10. Let A= {0,3,4,6,7,8,9,10} and R be the relation defined on A such that...

    Text Solution

    |

  11. Let [t] denote the greatest integer let. If the constant term in the e...

    Text Solution

    |

  12. Let [t] denote the greatest integer let. then (2)/(pi)int((pi)/(6))^((...

    Text Solution

    |

  13. The largest natural number n such that 3^(n) divides 66! is

    Text Solution

    |

  14. Consider a circle C(1):x^(2)+y^(2)-4x-2y=a-5. Let its mirror image in ...

    Text Solution

    |

  15. Let vec =6hati+9hatj+12hatk,vecb=ahat+11vecj-2veck-2hatk and vecc be ...

    Text Solution

    |

  16. If the solution curve of the differential equation (y-2log(e)x) dx +...

    Text Solution

    |

  17. let the mean and variance of 8 numbersx,y,10,12,6,12,4,8, be 9 and 9.2...

    Text Solution

    |

  18. If alpha (a) is the greatest term in the sequence alpha (n)=(n^(3))/(n...

    Text Solution

    |

  19. Let lambda(1),lambda (2) be the values of lambda for which the points ...

    Text Solution

    |

  20. The integeral int((x/2)^x+(2/x)^x)log2x dx is equal to

    Text Solution

    |