Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines `(x-4)/(4)=(y+2)/(5)=(z+3)/(3)` and `(x-1)/(3)=(y-3)/(4)=(z-4)/(2) ` is

A

`6sqrt3`

B

`6sqrt2`

C

`2sqrt6`

D

`3sqrt6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Write the equations of the lines in vector form. The first line can be expressed as: \[ \frac{x-4}{4} = \frac{y+2}{5} = \frac{z+3}{3} \] This can be rewritten in vector form as: \[ \mathbf{r_1} = \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix} \] where \(\begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix}\) is a point on the line and \(\begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}\) is the direction vector. The second line can be expressed as: \[ \frac{x-1}{3} = \frac{y-3}{4} = \frac{z-4}{2} \] This can be rewritten in vector form as: \[ \mathbf{r_2} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \] where \(\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}\) is a point on the line and \(\begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}\) is the direction vector. ### Step 2: Identify the points and direction vectors. From the above, we have: - For line 1: - Point \(A_1 = \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix}\) - Direction vector \(B_1 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}\) - For line 2: - Point \(A_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}\) - Direction vector \(B_2 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}\) ### Step 3: Calculate \(A_2 - A_1\). \[ A_2 - A_1 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 - 4 \\ 3 - (-2) \\ 4 - (-3) \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ 7 \end{pmatrix} \] ### Step 4: Compute the cross product \(B_1 \times B_2\). \[ B_1 \times B_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \] Using the determinant method: \[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 5 & 3 \\ 3 & 4 & 2 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i}(5 \cdot 2 - 3 \cdot 4) - \mathbf{j}(4 \cdot 2 - 3 \cdot 3) + \mathbf{k}(4 \cdot 4 - 5 \cdot 3) \] \[ = \mathbf{i}(10 - 12) - \mathbf{j}(8 - 9) + \mathbf{k}(16 - 15) \] \[ = -2\mathbf{i} + 1\mathbf{j} + 1\mathbf{k} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \] ### Step 5: Calculate the magnitude of the cross product. \[ |B_1 \times B_2| = \sqrt{(-2)^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 6: Calculate the shortest distance \(D\). The formula for the shortest distance \(D\) between two skew lines is given by: \[ D = \frac{|(A_2 - A_1) \cdot (B_1 \times B_2)|}{|B_1 \times B_2|} \] Calculating the dot product: \[ (A_2 - A_1) \cdot (B_1 \times B_2) = \begin{pmatrix} -3 \\ 5 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \] \[ = (-3)(-2) + (5)(1) + (7)(1) = 6 + 5 + 7 = 18 \] Now substituting back into the distance formula: \[ D = \frac{|18|}{\sqrt{6}} = \frac{18}{\sqrt{6}} = 3\sqrt{6} \] ### Final Answer: The shortest distance between the lines is \(3\sqrt{6}\). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-2)/(3)=(y-4)/(4)=(z-5)/(5)

The shortest distance between the lines (x-2)/(3)=(y+3)/(4)=(z-1)/(5) and (x-5)/(1)=(y-1)/(2)=(z-6)/(3) , is

The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4) lies in the interval

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

Find the shortest distance between the lines (x-6)/(3)=(y-7)/(-1)=(z-4)/(1) and (x)/(-3)=(y-9)/(2)=(z-2)/(4)

The shortest distance between line (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is

The shortest distance between the lines lines (x)/(2)=(y)/(2)=(z)/(1) and (x+2)/(-1)=(y-4)/(8)=(z-5)/(4) in the interval:

Find the shortest distance between the lines (x+3)/(-4) =(y-6)/(3)=(z)/(2) " and " (x+2)/(-4) =(y)/(1)=(z-7)/(1)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. The number of arrangements of the letters the word "INDEPENDENCE" in w...

    Text Solution

    |

  2. lim(xrarr0)(((1-cos^(2)(3x))/(cos^(3)(4x)))((sin^(3)(4x))/(log(e)(2x+1...

    Text Solution

    |

  3. The shortest distance between the lines (x-4)/(4)=(y+2)/(5)=(z+3)/(3) ...

    Text Solution

    |

  4. Let R br the focus of the parabola y^(2)=20x and the lines y=mx+c int...

    Text Solution

    |

  5. If the coefficients of three consecutive terms inthe expansion of (1+x...

    Text Solution

    |

  6. Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)} then f ((...

    Text Solution

    |

  7. Let A= {0,3,4,6,7,8,9,10} and R be the relation defined on A such that...

    Text Solution

    |

  8. Let [t] denote the greatest integer let. If the constant term in the e...

    Text Solution

    |

  9. Let [t] denote the greatest integer let. then (2)/(pi)int((pi)/(6))^((...

    Text Solution

    |

  10. The largest natural number n such that 3^(n) divides 66! is

    Text Solution

    |

  11. Consider a circle C(1):x^(2)+y^(2)-4x-2y=a-5. Let its mirror image in ...

    Text Solution

    |

  12. Let vec =6hati+9hatj+12hatk,vecb=ahat+11vecj-2veck-2hatk and vecc be ...

    Text Solution

    |

  13. If the solution curve of the differential equation (y-2log(e)x) dx +...

    Text Solution

    |

  14. let the mean and variance of 8 numbersx,y,10,12,6,12,4,8, be 9 and 9.2...

    Text Solution

    |

  15. If alpha (a) is the greatest term in the sequence alpha (n)=(n^(3))/(n...

    Text Solution

    |

  16. Let lambda(1),lambda (2) be the values of lambda for which the points ...

    Text Solution

    |

  17. The integeral int((x/2)^x+(2/x)^x)log2x dx is equal to

    Text Solution

    |

  18. Let A={1,2,3,4,5,6,7}. Then the relation R={(x,y) in A xx A : x+y=7} i...

    Text Solution

    |

  19. Let A={theta in (0,2pi):(1+2i sin theta)/(1-i sintheta) "is purely ima...

    Text Solution

    |

  20. Let the vectors vec u1 =hati+hatj+a hatk , vec u2=hati+b hatj+hatk and...

    Text Solution

    |