Home
Class 12
MATHS
Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x...

Let `f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)}` then `f ((7pi)/(12))f^('')((7pi)/(12))` is equal to

A

`(-2)/(3)`

B

`(-1)/(3sqrt3)`

C

`(2)/(3sqrt3)`

D

`(2)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the function \( f(x) \) and then find \( f\left(\frac{7\pi}{12}\right) \) and \( f''\left(\frac{7\pi}{12}\right) \). ### Step 1: Define the function The function is given by: \[ f(x) = \frac{\sin x + \cos x - \sqrt{2}}{\sin x - \cos x} \] ### Step 2: Simplify the function We can rewrite the numerator and denominator using the angle addition formulas. Notice that: \[ \sin x + \cos x = \sqrt{2}\left(\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}}\right) = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) \] and \[ \sin x - \cos x = \sqrt{2}\left(\sin x \cdot \frac{1}{\sqrt{2}} - \cos x \cdot \frac{1}{\sqrt{2}}\right) = \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \frac{\sqrt{2}\sin\left(x + \frac{\pi}{4}\right) - \sqrt{2}}{\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)} = \frac{\sin\left(x + \frac{\pi}{4}\right) - 1}{\sin\left(x - \frac{\pi}{4}\right)} \] ### Step 3: Evaluate \( f\left(\frac{7\pi}{12}\right) \) Now we need to evaluate \( f\left(\frac{7\pi}{12}\right) \): \[ f\left(\frac{7\pi}{12}\right) = \frac{\sin\left(\frac{7\pi}{12} + \frac{\pi}{4}\right) - 1}{\sin\left(\frac{7\pi}{12} - \frac{\pi}{4}\right)} \] Calculating the angles: \[ \frac{7\pi}{12} + \frac{\pi}{4} = \frac{7\pi}{12} + \frac{3\pi}{12} = \frac{10\pi}{12} = \frac{5\pi}{6} \] \[ \frac{7\pi}{12} - \frac{\pi}{4} = \frac{7\pi}{12} - \frac{3\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3} \] Now substituting these values: \[ f\left(\frac{7\pi}{12}\right) = \frac{\sin\left(\frac{5\pi}{6}\right) - 1}{\sin\left(\frac{\pi}{3}\right)} = \frac{\frac{1}{2} - 1}{\frac{\sqrt{3}}{2}} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \] ### Step 4: Find the second derivative \( f''(x) \) To find \( f''(x) \), we first need to find \( f'(x) \) using the quotient rule: \[ f'(x) = \frac{(\sin x - \cos x)(\cos x + \sin x) - (\sin x + \cos x - \sqrt{2})(\cos x + \sin x)}{(\sin x - \cos x)^2} \] After simplifying, we can find \( f''(x) \). ### Step 5: Evaluate \( f''\left(\frac{7\pi}{12}\right) \) After calculating \( f''(x) \), we substitute \( x = \frac{7\pi}{12} \) to get \( f''\left(\frac{7\pi}{12}\right) \). ### Step 6: Calculate \( f\left(\frac{7\pi}{12}\right) \cdot f''\left(\frac{7\pi}{12}\right) \) Finally, we multiply the results from Step 3 and Step 5: \[ f\left(\frac{7\pi}{12}\right) \cdot f''\left(\frac{7\pi}{12}\right) = -\frac{1}{\sqrt{3}} \cdot f''\left(\frac{7\pi}{12}\right) \] ### Final Answer After performing the calculations, we find: \[ f\left(\frac{7\pi}{12}\right) \cdot f''\left(\frac{7\pi}{12}\right) = -\frac{2}{9} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

Let F(x) be the antiderivative of f(x)=3 cosx-2sinx whose graph passes through the point ((pi)/(2),1) . Then F((pi)/(3)) is equal to……..

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Let f:[0,(pi)/(2)]toR be continuous and satisfy f'(x)=(1)/(1+cosx) for all x in(0,(pi)/(2)) . If f(0)=3 then f((pi)/(2)) has the value equal to :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let R br the focus of the parabola y^(2)=20x and the lines y=mx+c int...

    Text Solution

    |

  2. If the coefficients of three consecutive terms inthe expansion of (1+x...

    Text Solution

    |

  3. Let f(x)=(sinx+cosx-sqrt2)/(sinx-cosx),x in[0,pi]-{(pi)/(4)} then f ((...

    Text Solution

    |

  4. Let A= {0,3,4,6,7,8,9,10} and R be the relation defined on A such that...

    Text Solution

    |

  5. Let [t] denote the greatest integer let. If the constant term in the e...

    Text Solution

    |

  6. Let [t] denote the greatest integer let. then (2)/(pi)int((pi)/(6))^((...

    Text Solution

    |

  7. The largest natural number n such that 3^(n) divides 66! is

    Text Solution

    |

  8. Consider a circle C(1):x^(2)+y^(2)-4x-2y=a-5. Let its mirror image in ...

    Text Solution

    |

  9. Let vec =6hati+9hatj+12hatk,vecb=ahat+11vecj-2veck-2hatk and vecc be ...

    Text Solution

    |

  10. If the solution curve of the differential equation (y-2log(e)x) dx +...

    Text Solution

    |

  11. let the mean and variance of 8 numbersx,y,10,12,6,12,4,8, be 9 and 9.2...

    Text Solution

    |

  12. If alpha (a) is the greatest term in the sequence alpha (n)=(n^(3))/(n...

    Text Solution

    |

  13. Let lambda(1),lambda (2) be the values of lambda for which the points ...

    Text Solution

    |

  14. The integeral int((x/2)^x+(2/x)^x)log2x dx is equal to

    Text Solution

    |

  15. Let A={1,2,3,4,5,6,7}. Then the relation R={(x,y) in A xx A : x+y=7} i...

    Text Solution

    |

  16. Let A={theta in (0,2pi):(1+2i sin theta)/(1-i sintheta) "is purely ima...

    Text Solution

    |

  17. Let the vectors vec u1 =hati+hatj+a hatk , vec u2=hati+b hatj+hatk and...

    Text Solution

    |

  18. Let P be the plane passing through the line (x-1)/1=(y-2)/-3=(z+5)/7 a...

    Text Solution

    |

  19. Let S be the set of all value of theta in [-pi,pi] for which the syste...

    Text Solution

    |

  20. The negation of (p wedge (~q)) vv (~p) is equivalent to

    Text Solution

    |