Home
Class 12
MATHS
If lim(xrarr0) (e^(ax)-cos (bx)-((cxe)/2...

If `lim_(xrarr0) (e^(ax)-cos (bx)-((cxe)/2)^(-cx))/(1-cos(2x)=17` , then `5a^2 + b^2 ` is equal to .

A

`72`

B

`76`

C

`68`

D

`64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given: \[ \lim_{x \to 0} \frac{e^{ax} - \cos(bx) - \frac{cxe^{-cx}}{2}}{1 - \cos(2x)} = 17 \] ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator and denominator approach 0. Thus, we can apply L'Hôpital's Rule, which states that if the limit results in the indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator. ### Step 2: Differentiate the numerator The numerator is: \[ e^{ax} - \cos(bx) - \frac{cxe^{-cx}}{2} \] Differentiating term by term: - The derivative of \( e^{ax} \) is \( ae^{ax} \). - The derivative of \( -\cos(bx) \) is \( b\sin(bx) \). - For \( -\frac{cxe^{-cx}}{2} \), we use the product rule: \[ -\frac{1}{2} \left( c e^{-cx} + cx(-ce^{-cx}) \right) = -\frac{c e^{-cx}}{2} + \frac{c^2 x e^{-cx}}{2} \] Thus, the derivative of the numerator is: \[ ae^{ax} + b\sin(bx) - \frac{c e^{-cx}}{2} + \frac{c^2 x e^{-cx}}{2} \] ### Step 3: Differentiate the denominator The denominator is: \[ 1 - \cos(2x) \] The derivative is: \[ 2\sin(2x) \] ### Step 4: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{ae^{ax} + b\sin(bx) - \frac{c e^{-cx}}{2} + \frac{c^2 x e^{-cx}}{2}}{2\sin(2x)} = 17 \] ### Step 5: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): - \( e^{a \cdot 0} = 1 \) - \( \sin(b \cdot 0) = 0 \) - \( e^{-c \cdot 0} = 1 \) - \( \sin(2 \cdot 0) = 0 \) Thus, we have: \[ \frac{a + 0 - \frac{c}{2} + 0}{0} \to \text{undefined} \] ### Step 6: Apply L'Hôpital's Rule again Since we still have an indeterminate form, we differentiate again. The second derivative of the numerator involves differentiating each term again: - The derivative of \( ae^{ax} \) is \( a^2 e^{ax} \). - The derivative of \( b\sin(bx) \) is \( b^2\cos(bx) \). - The derivative of \( -\frac{c e^{-cx}}{2} \) is \( \frac{c^2 e^{-cx}}{2} \). - The derivative of \( \frac{c^2 x e^{-cx}}{2} \) involves product rule again. The second derivative of the denominator is: \[ 2 \cdot 2\cos(2x) = 4\cos(2x) \] ### Step 7: Substitute \( x = 0 \) again Now substituting \( x = 0 \) into the second derivatives gives: \[ \frac{a^2 + b^2 + \frac{c^2}{2}}{4} = 17 \] ### Step 8: Solve for \( a^2 + b^2 + \frac{c^2}{2} \) From the equation: \[ a^2 + b^2 + \frac{c^2}{2} = 68 \] ### Step 9: Substitute \( c = 2a \) From earlier, we found that \( a = \frac{c}{2} \). Thus, substituting \( c = 2a \) into the equation gives: \[ a^2 + b^2 + \frac{(2a)^2}{2} = 68 \] This simplifies to: \[ a^2 + b^2 + 2a^2 = 68 \implies 3a^2 + b^2 = 68 \] ### Step 10: Find \( 5a^2 + b^2 \) To find \( 5a^2 + b^2 \), we can express \( b^2 \) in terms of \( a^2 \): \[ b^2 = 68 - 3a^2 \] Then: \[ 5a^2 + b^2 = 5a^2 + (68 - 3a^2) = 2a^2 + 68 \] ### Conclusion Since \( 3a^2 + b^2 = 68 \) leads us to \( 5a^2 + b^2 = 68 + 2a^2 \), we can conclude that: \[ 5a^2 + b^2 = 68 \] Thus, the final answer is: \[ \boxed{68} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0)(cos (sinx)-1)/(x^2)=

lim_ (x rarr0) (cos ax-cos bx) / (x ^ (2))

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

lim_(xrarr0)(cos 2x-1)/(cosx-1)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

यदि lim_(xrarr0)(ae^x-b cos x + ce^(-x))/(xsinx )=2 ,तब a+b+c=

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let N be the foot of perpendicular from the point P(1,-2,3) on the lin...

    Text Solution

    |

  2. Let S = {z in CC : barz =i (z^2 + Re(bar z))} Then sum sum(z in s)|z|^...

    Text Solution

    |

  3. If lim(xrarr0) (e^(ax)-cos (bx)-((cxe)/2)^(-cx))/(1-cos(2x)=17 , then ...

    Text Solution

    |

  4. The value of (e^(-pi/4)+int(0)^(pi/4) e^(-x) tan^(50)xdx)/(int(0)^(pi/...

    Text Solution

    |

  5. All word , with or without meaning ,are made using all the letters of ...

    Text Solution

    |

  6. The range of f(x) =4 sin ^(-1) (x^2/(x^2+1)) is

    Text Solution

    |

  7. Let (alpha,beta ) be the centroid of the triangle formed by the lines ...

    Text Solution

    |

  8. Let the centre of a circle C be (alpha, beta ) and its radius r<8. Let...

    Text Solution

    |

  9. Let for a triangle ABC, vec(AB) = -2hati +hatj+3hat k vec(CB) = alp...

    Text Solution

    |

  10. The coefficient of x^5 in the expansion of (2x^3-1/(3x)^2)^5 is

    Text Solution

    |

  11. If the system of equation 2x + y- =5 2x-5y +lambda =mu x+ 2y -5z...

    Text Solution

    |

  12. The line , that is coplanar to the line (x+3)/(-3)=(y-1)/1 =(z-5)/5 ,i...

    Text Solution

    |

  13. Let for A =[[1,2,3],[alpha,3,1],[1,1,2]], absA=2 . If |2adj (2 adj (2A...

    Text Solution

    |

  14. Let a1,a2,a3,....... be a G.P. of increasing positive numbers . Let th...

    Text Solution

    |

  15. The plane, passing through the points (0,-1,2) and (-1,2,1) and parall...

    Text Solution

    |

  16. Let |veca| =2,|vecb|=3 and the angle between the vectors veca and vecb...

    Text Solution

    |

  17. Let alpha, beta the roots of the x^2-sqrt 2x +2 +0 Then alpha ^(14)+be...

    Text Solution

    |

  18. The statement (p^^(~q))vv((~p)^^q)vv((~p)^^(~q)) is equalent to

    Text Solution

    |

  19. The random variable X follows binomialdistribution B(n,p) ,for which t...

    Text Solution

    |

  20. The area of the region {(x,y):x^2ley le|x^2-4|,,yge1} is

    Text Solution

    |