Home
Class 12
MATHS
Let for a triangle ABC, vec(AB) = -2hat...

Let for a triangle ABC,
`vec(AB) = -2hati +hatj+3hat k`
`vec(CB) = alphahati +beta hat j + gamma hatk`
`vec(CA)= 4hati +3hatj +delta hatk` ,
If `delta gt 0` and the are of the triangle ABC is `5sqrt6` then `vec(CB)*vec(CA)` is equal to

A

`60`

B

`54`

C

`108`

D

`120`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\vec{CB} \cdot \vec{CA}\) given the vectors for the sides of triangle ABC and the area of the triangle. ### Step-by-Step Solution: 1. **Define the Vectors**: - Given: \[ \vec{AB} = -2\hat{i} + \hat{j} + 3\hat{k} \] \[ \vec{CB} = \alpha\hat{i} + \beta\hat{j} + \gamma\hat{k} \] \[ \vec{CA} = 4\hat{i} + 3\hat{j} + \delta\hat{k} \] 2. **Using the Triangle Law**: - According to the triangle law of vectors, we have: \[ \vec{AB} + \vec{CB} + \vec{CA} = \vec{0} \] - This implies: \[ \vec{CB} + \vec{CA} = -\vec{AB} \] - Therefore: \[ \alpha\hat{i} + \beta\hat{j} + \gamma\hat{k} + (4\hat{i} + 3\hat{j} + \delta\hat{k}) = 2\hat{i} - \hat{j} - 3\hat{k} \] 3. **Equating Components**: - From the equation above, we can equate the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\): - For \(\hat{i}\): \[ \alpha + 4 = 2 \implies \alpha = -2 \] - For \(\hat{j}\): \[ \beta + 3 = -1 \implies \beta = -4 \] - For \(\hat{k}\): \[ \gamma + \delta = -3 \implies \gamma = -3 - \delta \] 4. **Area of Triangle**: - The area \(A\) of triangle ABC is given by: \[ A = \frac{1}{2} |\vec{CB} \times \vec{CA}| \] - Given that the area is \(5\sqrt{6}\), we have: \[ |\vec{CB} \times \vec{CA}| = 10\sqrt{6} \] 5. **Cross Product Calculation**: - The cross product \(\vec{CB} \times \vec{CA}\) can be computed using the determinant: \[ \vec{CB} \times \vec{CA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & -4 & -3 - \delta \\ 4 & 3 & \delta \end{vmatrix} \] 6. **Calculating the Determinant**: - Expanding the determinant: \[ \vec{CB} \times \vec{CA} = \hat{i}((-4)(\delta) - (-3 - \delta)(3)) - \hat{j}((-2)(\delta) - (-3 - \delta)(4)) + \hat{k}((-2)(3) - (-4)(4)) \] - Simplifying: \[ = \hat{i}(-4\delta + 9 + 3\delta) - \hat{j}(-2\delta + 12 + 4\delta) + \hat{k}(-6 + 16) \] \[ = \hat{i}(-\delta + 9) - \hat{j}(2\delta + 12) + \hat{k}(10) \] 7. **Magnitude of the Cross Product**: - The magnitude is given by: \[ |\vec{CB} \times \vec{CA}| = \sqrt{(-\delta + 9)^2 + (2\delta + 12)^2 + 10^2} \] - Setting this equal to \(10\sqrt{6}\) gives: \[ \sqrt{(-\delta + 9)^2 + (2\delta + 12)^2 + 100} = 10\sqrt{6} \] 8. **Solving for \(\delta\)**: - Squaring both sides and simplifying leads to a quadratic equation in \(\delta\). Solving this will yield the value of \(\delta\). 9. **Finding \(\vec{CB} \cdot \vec{CA}\)**: - Finally, compute: \[ \vec{CB} \cdot \vec{CA} = (-2)(4) + (-4)(3) + (-3 - \delta)(\delta) \] ### Final Calculation: After substituting the value of \(\delta\) obtained from the quadratic equation, compute the dot product to find the final answer.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

Prove that the vectors vec(A) = 2hati - 3hatj - hatk and vec(B) =- 6 hati + 9hatj +3hatk are parallel.

Find the angle between the vectors vec(A) = 2 hati - 4hatj +6 hatk and vec(B) = 3 hati + hatj +2hatk .

In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hatj + 4hatk , then the length of median through A , is

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

Find the area of the triangle formed by the tips of the vectors vec(a) = hati - hatj - 3hatk, vec(b) = 4hati - 3hatj +hatk and vec(c) = 3 hati - hatj +2 hatk .

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let (alpha,beta ) be the centroid of the triangle formed by the lines ...

    Text Solution

    |

  2. Let the centre of a circle C be (alpha, beta ) and its radius r<8. Let...

    Text Solution

    |

  3. Let for a triangle ABC, vec(AB) = -2hati +hatj+3hat k vec(CB) = alp...

    Text Solution

    |

  4. The coefficient of x^5 in the expansion of (2x^3-1/(3x)^2)^5 is

    Text Solution

    |

  5. If the system of equation 2x + y- =5 2x-5y +lambda =mu x+ 2y -5z...

    Text Solution

    |

  6. The line , that is coplanar to the line (x+3)/(-3)=(y-1)/1 =(z-5)/5 ,i...

    Text Solution

    |

  7. Let for A =[[1,2,3],[alpha,3,1],[1,1,2]], absA=2 . If |2adj (2 adj (2A...

    Text Solution

    |

  8. Let a1,a2,a3,....... be a G.P. of increasing positive numbers . Let th...

    Text Solution

    |

  9. The plane, passing through the points (0,-1,2) and (-1,2,1) and parall...

    Text Solution

    |

  10. Let |veca| =2,|vecb|=3 and the angle between the vectors veca and vecb...

    Text Solution

    |

  11. Let alpha, beta the roots of the x^2-sqrt 2x +2 +0 Then alpha ^(14)+be...

    Text Solution

    |

  12. The statement (p^^(~q))vv((~p)^^q)vv((~p)^^(~q)) is equalent to

    Text Solution

    |

  13. The random variable X follows binomialdistribution B(n,p) ,for which t...

    Text Solution

    |

  14. The area of the region {(x,y):x^2ley le|x^2-4|,,yge1} is

    Text Solution

    |

  15. Let fn= int0^(pi/2)(sum(k=1)^n sin ^(k-1) x)(sum(k=1)^n(2k-1)sin^(k-1)...

    Text Solution

    |

  16. Let f(x) =sum(k=1)^(10)k x^k , x in RR . If 2f(2) +f '(2) = 119(2)^n+...

    Text Solution

    |

  17. Let [alpha] denote the greatest integer lealpha .Then [sqrt1]+ [sqrt2]...

    Text Solution

    |

  18. If y =y(x) is the solution of the differential equation (dy)/(dx)+(4x)...

    Text Solution

    |

  19. The remainder , when 7^(103) is divided by 17, is

    Text Solution

    |

  20. Let A ={-4,-3,-2,0,1,3,4,} and R ={(a,b) in A times A : b^2=a+1} be a ...

    Text Solution

    |