Home
Class 12
MATHS
Let for A =[[1,2,3],[alpha,3,1],[1,1,2]]...

Let for `A =[[1,2,3],[alpha,3,1],[1,1,2]], absA=2` . If `|2adj (2 adj (2A))|=32^n+alpha` is equal to

A

`11`

B

`9`

C

`12`

D

`10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will first find the value of \( \alpha \) using the determinant of matrix \( A \), and then we will compute \( |2 \text{adj}(2 \text{adj}(2A))| \) to find \( n \) and finally calculate \( 3n + \alpha \). ### Step 1: Find the determinant of matrix \( A \) Given: \[ A = \begin{bmatrix} 1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix} \] We know that \( |A| = 2 \). Using the determinant formula for a 3x3 matrix: \[ |A| = 1 \cdot (3 \cdot 2 - 1 \cdot 1) - 2 \cdot (\alpha \cdot 2 - 1 \cdot 1) + 3 \cdot (\alpha \cdot 1 - 3 \cdot 1) \] Calculating this: \[ |A| = 1 \cdot (6 - 1) - 2 \cdot (2\alpha - 1) + 3 \cdot (\alpha - 3) \] \[ = 5 - 4\alpha + 2 + 3\alpha - 9 \] \[ = -4\alpha + 5 + 2 - 9 \] \[ = -4\alpha - 2 \] Setting this equal to 2: \[ -4\alpha - 2 = 2 \] \[ -4\alpha = 4 \] \[ \alpha = -1 \] ### Step 2: Compute \( |2 \text{adj}(2 \text{adj}(2A))| \) First, we need to compute \( 2A \): \[ 2A = 2 \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ -2 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} \] Now, we find \( |2A| \): \[ |2A| = 2^3 |A| = 8 \cdot 2 = 16 \] Next, we calculate \( \text{adj}(2A) \): \[ |\text{adj}(2A)| = |A|^{2} = 2^{2} = 4 \] Now, we compute \( |2 \text{adj}(2A)| \): \[ |2 \text{adj}(2A)| = 2^3 |\text{adj}(2A)| = 8 \cdot 4 = 32 \] Next, we compute \( \text{adj}(2 \text{adj}(2A)) \): \[ |\text{adj}(2 \text{adj}(2A))| = |2 \text{adj}(2A)|^{2} = 32^{2} = 1024 \] Finally, we compute \( |2 \text{adj}(2 \text{adj}(2A))| \): \[ |2 \text{adj}(2 \text{adj}(2A))| = 2^3 |\text{adj}(2 \text{adj}(2A))| = 8 \cdot 1024 = 8192 \] ### Step 3: Relate to the expression \( |2 \text{adj}(2 \text{adj}(2A))| = 32^n + \alpha \) We know: \[ 8192 = 32^n - 1 \] Since \( 32 = 2^5 \), we can express \( 8192 \) as: \[ 8192 = 2^{13} \] Thus: \[ 2^{13} = (2^5)^n - 1 \] This implies: \[ 2^{13} = 2^{5n} - 1 \] So, \( 5n = 13 \) gives \( n = \frac{13}{5} \). ### Step 4: Calculate \( 3n + \alpha \) Now substituting \( n \) and \( \alpha \): \[ 3n + \alpha = 3 \cdot \frac{13}{5} - 1 = \frac{39}{5} - 1 = \frac{39}{5} - \frac{5}{5} = \frac{34}{5} \] ### Final Answer Thus, the answer is: \[ \boxed{11} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If A=([1,2,3],[1,3,4],[1,4,3]), then | adj A| =

" A is a square matrix of order "3" where "A=([1,2,3],[2,3,4],[5,6,8])" then the value of "|(" adj "(adj(adj(adj A))))" is equal to "

A is a matrix of 3times3 ,where A=([1,2,3],[2,3,4],[4,5,8]) then the value of |(adj(adj(adj(adj A)))| is equal to 2^( k) ,the value of k-9 is

If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C|) is

If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | is

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let matrix A=[[x,y,-z1,2,31,1,2]] where x,y,z varepsilon N. If det.,(adj(adj.A))=2^(8)*(3^(4)) then the number of such matrices A is :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. If the system of equation 2x + y- =5 2x-5y +lambda =mu x+ 2y -5z...

    Text Solution

    |

  2. The line , that is coplanar to the line (x+3)/(-3)=(y-1)/1 =(z-5)/5 ,i...

    Text Solution

    |

  3. Let for A =[[1,2,3],[alpha,3,1],[1,1,2]], absA=2 . If |2adj (2 adj (2A...

    Text Solution

    |

  4. Let a1,a2,a3,....... be a G.P. of increasing positive numbers . Let th...

    Text Solution

    |

  5. The plane, passing through the points (0,-1,2) and (-1,2,1) and parall...

    Text Solution

    |

  6. Let |veca| =2,|vecb|=3 and the angle between the vectors veca and vecb...

    Text Solution

    |

  7. Let alpha, beta the roots of the x^2-sqrt 2x +2 +0 Then alpha ^(14)+be...

    Text Solution

    |

  8. The statement (p^^(~q))vv((~p)^^q)vv((~p)^^(~q)) is equalent to

    Text Solution

    |

  9. The random variable X follows binomialdistribution B(n,p) ,for which t...

    Text Solution

    |

  10. The area of the region {(x,y):x^2ley le|x^2-4|,,yge1} is

    Text Solution

    |

  11. Let fn= int0^(pi/2)(sum(k=1)^n sin ^(k-1) x)(sum(k=1)^n(2k-1)sin^(k-1)...

    Text Solution

    |

  12. Let f(x) =sum(k=1)^(10)k x^k , x in RR . If 2f(2) +f '(2) = 119(2)^n+...

    Text Solution

    |

  13. Let [alpha] denote the greatest integer lealpha .Then [sqrt1]+ [sqrt2]...

    Text Solution

    |

  14. If y =y(x) is the solution of the differential equation (dy)/(dx)+(4x)...

    Text Solution

    |

  15. The remainder , when 7^(103) is divided by 17, is

    Text Solution

    |

  16. Let A ={-4,-3,-2,0,1,3,4,} and R ={(a,b) in A times A : b^2=a+1} be a ...

    Text Solution

    |

  17. Total numbers of 3-digit numbers that are divicible by 6and can be for...

    Text Solution

    |

  18. The foci of hyperbola are (pm2,0) and its eccentricity is 3/2 .A tange...

    Text Solution

    |

  19. For x in (-1,1)], the numberof solutions of the equation sin^(-1)x=2 t...

    Text Solution

    |

  20. The mean and standard deviation of the marks of 10 students were found...

    Text Solution

    |