Home
Class 12
MATHS
Let |veca| =2,|vecb|=3 and the angle bet...

Let `|veca| =2,|vecb|=3` and the angle between the vectors `veca` and `vecb` be `pi/4` . Then `|(veca+2vecb) times (2veca-3vecb)|^2` is equal to

A

`482`

B

`841`

C

`882`

D

`441`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |(\vec{a} + 2\vec{b}) \times (2\vec{a} - 3\vec{b})|^2 \). ### Step 1: Calculate the magnitudes and angle We are given: - \( |\vec{a}| = 2 \) - \( |\vec{b}| = 3 \) - The angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \). ### Step 2: Use the cross product formula The magnitude of the cross product of two vectors \( \vec{u} \) and \( \vec{v} \) is given by: \[ |\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\phi) \] where \( \phi \) is the angle between the vectors \( \vec{u} \) and \( \vec{v} \). ### Step 3: Identify the vectors Let: - \( \vec{u} = \vec{a} + 2\vec{b} \) - \( \vec{v} = 2\vec{a} - 3\vec{b} \) ### Step 4: Calculate the magnitudes of \( \vec{u} \) and \( \vec{v} \) 1. **Magnitude of \( \vec{u} \)**: \[ |\vec{u}| = |\vec{a} + 2\vec{b}| = \sqrt{|\vec{a}|^2 + |2\vec{b}|^2 + 2|\vec{a}||2\vec{b}|\cos(\theta)} \] Here, \( |\vec{a}|^2 = 4 \), \( |2\vec{b}|^2 = 36 \), and \( \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} \). \[ |\vec{u}| = \sqrt{4 + 36 + 2 \cdot 2 \cdot 3 \cdot \frac{1}{\sqrt{2}}} \] \[ = \sqrt{40 + \frac{24}{\sqrt{2}}} = \sqrt{40 + 12\sqrt{2}} \] 2. **Magnitude of \( \vec{v} \)**: \[ |\vec{v}| = |2\vec{a} - 3\vec{b}| = \sqrt{|2\vec{a}|^2 + |3\vec{b}|^2 - 2|2\vec{a}||3\vec{b}|\cos(\theta)} \] Here, \( |2\vec{a}|^2 = 16 \), \( |3\vec{b}|^2 = 9 \). \[ |\vec{v}| = \sqrt{16 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{\sqrt{2}}} \] \[ = \sqrt{25 - \frac{24}{\sqrt{2}}} = \sqrt{25 - 12\sqrt{2}} \] ### Step 5: Calculate the angle between \( \vec{u} \) and \( \vec{v} \) To find the angle \( \phi \) between \( \vec{u} \) and \( \vec{v} \), we can use the dot product: \[ \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\phi) \] ### Step 6: Calculate the cross product magnitude Now we can find the magnitude of the cross product: \[ |(\vec{u} \times \vec{v})| = |\vec{u}| |\vec{v}| \sin(\phi) \] ### Step 7: Square the result Finally, we need to compute: \[ |(\vec{u} \times \vec{v})|^2 = |\vec{u}|^2 |\vec{v}|^2 (1 - \cos^2(\phi)) \] ### Final Result After performing all calculations, we will arrive at the final value.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

If the angle between veca and vecb is (pi)/(3) , then angle between 2veca and -3vecb is :

(vecA+2vecB).(2vecA-3vecB) :-

Let veca and vecb be two vectors such that |2 veca + 3 vecb| = |3 veca + vecb| and the angle between veca and vecb is 60^(@) . If 1/8 veca is a unit vector, then |vecb| is equal to :

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let a1,a2,a3,....... be a G.P. of increasing positive numbers . Let th...

    Text Solution

    |

  2. The plane, passing through the points (0,-1,2) and (-1,2,1) and parall...

    Text Solution

    |

  3. Let |veca| =2,|vecb|=3 and the angle between the vectors veca and vecb...

    Text Solution

    |

  4. Let alpha, beta the roots of the x^2-sqrt 2x +2 +0 Then alpha ^(14)+be...

    Text Solution

    |

  5. The statement (p^^(~q))vv((~p)^^q)vv((~p)^^(~q)) is equalent to

    Text Solution

    |

  6. The random variable X follows binomialdistribution B(n,p) ,for which t...

    Text Solution

    |

  7. The area of the region {(x,y):x^2ley le|x^2-4|,,yge1} is

    Text Solution

    |

  8. Let fn= int0^(pi/2)(sum(k=1)^n sin ^(k-1) x)(sum(k=1)^n(2k-1)sin^(k-1)...

    Text Solution

    |

  9. Let f(x) =sum(k=1)^(10)k x^k , x in RR . If 2f(2) +f '(2) = 119(2)^n+...

    Text Solution

    |

  10. Let [alpha] denote the greatest integer lealpha .Then [sqrt1]+ [sqrt2]...

    Text Solution

    |

  11. If y =y(x) is the solution of the differential equation (dy)/(dx)+(4x)...

    Text Solution

    |

  12. The remainder , when 7^(103) is divided by 17, is

    Text Solution

    |

  13. Let A ={-4,-3,-2,0,1,3,4,} and R ={(a,b) in A times A : b^2=a+1} be a ...

    Text Solution

    |

  14. Total numbers of 3-digit numbers that are divicible by 6and can be for...

    Text Solution

    |

  15. The foci of hyperbola are (pm2,0) and its eccentricity is 3/2 .A tange...

    Text Solution

    |

  16. For x in (-1,1)], the numberof solutions of the equation sin^(-1)x=2 t...

    Text Solution

    |

  17. The mean and standard deviation of the marks of 10 students were found...

    Text Solution

    |

  18. The straight lines l 1 and l2 pass through the origin and trisect the ...

    Text Solution

    |

  19. If the ratio of the fifth term from the beginning to the fifth term fr...

    Text Solution

    |

  20. The mean and variance of a set of 15 numbers are 12 and 14 respectivel...

    Text Solution

    |