Home
Class 12
PHYSICS
The kinetic energy of an electron, alpha...

The kinetic energy of an electron, `alpha -particle and a proton are given as 4 K, 2 K and K respectively. The de-Broglie wavelength associated with electron `(lambdae)`, `alpha`-particle `(lambda α) `and the proton `(lambda p) are as follows:

A

`lambda α = lambda p gt lambda e`

B

`lambda α ltlambda p ltlambda e`

C

`lambda α = lamnbda p lt lambda e`

D

`lambda α gt lambda p gt lambda e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the de-Broglie wavelengths associated with an electron, an alpha particle, and a proton based on their given kinetic energies. The kinetic energies are as follows: - Kinetic Energy of Electron (KE_e) = 4K - Kinetic Energy of Alpha Particle (KE_α) = 2K - Kinetic Energy of Proton (KE_p) = K ### Step 1: Write the formula for de-Broglie wavelength The de-Broglie wavelength (λ) is given by the formula: \[ \lambda = \frac{h}{p} \] where \( p \) is the momentum of the particle and \( h \) is Planck's constant. ### Step 2: Relate kinetic energy to momentum The kinetic energy (KE) is related to momentum (p) by the formula: \[ KE = \frac{p^2}{2m} \] From this, we can express momentum as: \[ p = \sqrt{2m \cdot KE} \] ### Step 3: Calculate the de-Broglie wavelength for each particle #### For the Electron: 1. **Mass of Electron (m_e)**: \( m_e \) 2. **Kinetic Energy (KE_e)**: \( 4K \) 3. **Momentum (p_e)**: \[ p_e = \sqrt{2m_e \cdot 4K} = \sqrt{8m_e K} \] 4. **De-Broglie Wavelength (λ_e)**: \[ \lambda_e = \frac{h}{p_e} = \frac{h}{\sqrt{8m_e K}} = \frac{h}{2\sqrt{2m_e K}} \] #### For the Alpha Particle: 1. **Mass of Alpha Particle (m_α)**: \( 4m_p \) (approximately 4 times the mass of a proton) 2. **Kinetic Energy (KE_α)**: \( 2K \) 3. **Momentum (p_α)**: \[ p_α = \sqrt{2(4m_p) \cdot 2K} = \sqrt{16m_p K} = 4\sqrt{m_p K} \] 4. **De-Broglie Wavelength (λ_α)**: \[ \lambda_α = \frac{h}{p_α} = \frac{h}{4\sqrt{m_p K}} \] #### For the Proton: 1. **Mass of Proton (m_p)**: \( m_p \) 2. **Kinetic Energy (KE_p)**: \( K \) 3. **Momentum (p_p)**: \[ p_p = \sqrt{2m_p \cdot K} = \sqrt{2m_p K} \] 4. **De-Broglie Wavelength (λ_p)**: \[ \lambda_p = \frac{h}{p_p} = \frac{h}{\sqrt{2m_p K}} \] ### Step 4: Compare the wavelengths Now we have: - \( \lambda_e = \frac{h}{2\sqrt{2m_e K}} \) - \( \lambda_α = \frac{h}{4\sqrt{m_p K}} \) - \( \lambda_p = \frac{h}{\sqrt{2m_p K}} \) To compare these wavelengths, we can analyze the ratios: 1. **Comparing \( \lambda_e \) and \( \lambda_p \)**: \[ \lambda_e = \frac{h}{2\sqrt{2m_e K}} \quad \text{and} \quad \lambda_p = \frac{h}{\sqrt{2m_p K}} \] Since \( m_e \) is much smaller than \( m_p \), \( \lambda_e \) will be greater than \( \lambda_p \). 2. **Comparing \( \lambda_α \) and \( \lambda_p \)**: \[ \lambda_α = \frac{h}{4\sqrt{m_p K}} \quad \text{and} \quad \lambda_p = \frac{h}{\sqrt{2m_p K}} \] Here, \( \lambda_α \) will be greater than \( \lambda_p \) since \( 4\sqrt{m_p K} \) is larger than \( \sqrt{2m_p K} \). 3. **Final Comparison**: Thus, we can conclude: \[ \lambda_α > \lambda_p > \lambda_e \] ### Final Answer: The order of the de-Broglie wavelengths is: \[ \lambda_α > \lambda_p > \lambda_e \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|492 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|22 Videos

Similar Questions

Explore conceptually related problems

The de Broglie wavelength lambda of a particle

The de - Broglie wavelength lambda associated with an electron having kinetic energy E is given by the expression

An electron, an alpha -particle and a proton have the same kinetic energy. Which of these particles has the largest de-Broglie wavelength?

An electron and a proton have same kinetic energy Ratio of their respective de-Broglie wavelength is about

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. A long straight wire of circular cross-section (radius a) is carrying ...

    Text Solution

    |

  2. Given below are two statements: one is labelled as Assertion A and the...

    Text Solution

    |

  3. The kinetic energy of an electron, alpha -particle and a proton are gi...

    Text Solution

    |

  4. The radius of fifth orbit of Li^(++) is times 10^(−12) m. Take: radiu...

    Text Solution

    |

  5. A parallel plate capacitor with plate area A and plate separation d is...

    Text Solution

    |

  6. A particle of mass 10 g moves in a straight line with retardation 2x, ...

    Text Solution

    |

  7. Two identical circular wires of radius 20 cm and carrying current sqrt...

    Text Solution

    |

  8. A person driving car at a constant speed of 15 m/s is approaching a ve...

    Text Solution

    |

  9. A pole is vertically submerged in swimming pool, such that it gives a ...

    Text Solution

    |

  10. A steel rod has a radius of 20 mm and a length of 2.0 m. A force of 62...

    Text Solution

    |

  11. An ideal transformer with purely resistive load operates at 12 kV on t...

    Text Solution

    |

  12. The length of a metallic wire is increased by 20% and its area of cros...

    Text Solution

    |

  13. Two identical solid spheres each of mass 2 kg and radii 10 cm are fixe...

    Text Solution

    |

  14. The half life of a radioactive substance is T. The time taken, for dis...

    Text Solution

    |

  15. Two projectiles are projected at 30^@ and 60^@ with the horizontal wit...

    Text Solution

    |

  16. A gas is compressed adiabatically, which one of the following statemen...

    Text Solution

    |

  17. The amplitude of magnetic field in an electromagnetic wave propagating...

    Text Solution

    |

  18. Given below are two statements: Statement I : Rotation of the earth s...

    Text Solution

    |

  19. Given below are two statements: one is labelled as Assertion A and the...

    Text Solution

    |

  20. Young’s moduli of the material of wires A and B are in the ratio of 1 ...

    Text Solution

    |