Home
Class 12
MATHS
Let the position vectors of the points A...

Let the position vectors of the points A, B, C and D be `5hati+5j+2lambda hatk, hati + 2hatj + 3hatk, -2hati +lambda hat j+4hat k` and `-hati +5hatj +6hatk` .Let the set `S={lambda in RR `: the points A, B , C and D are complanar}. The `sum_(lambda in S)(lambda + 2)^2` is equal to

A

25

B

`(37)/2`

C

13

D

41

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \lambda \) for which the points A, B, C, and D are coplanar. The position vectors of the points A, B, C, and D are given as: - \( \vec{A} = 5\hat{i} + 5\hat{j} + 2\lambda\hat{k} \) - \( \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{C} = -2\hat{i} + \lambda\hat{j} + 4\hat{k} \) - \( \vec{D} = -\hat{i} + 5\hat{j} + 6\hat{k} \) ### Step 1: Find the vectors AB, AC, and AD We first calculate the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \): \[ \vec{AB} = \vec{B} - \vec{A} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (5\hat{i} + 5\hat{j} + 2\lambda\hat{k}) = (-4\hat{i} - 3\hat{j} + (3 - 2\lambda)\hat{k}) \] \[ \vec{AC} = \vec{C} - \vec{A} = (-2\hat{i} + \lambda\hat{j} + 4\hat{k}) - (5\hat{i} + 5\hat{j} + 2\lambda\hat{k}) = (-7\hat{i} + (\lambda - 5)\hat{j} + (4 - 2\lambda)\hat{k}) \] \[ \vec{AD} = \vec{D} - \vec{A} = (-\hat{i} + 5\hat{j} + 6\hat{k}) - (5\hat{i} + 5\hat{j} + 2\lambda\hat{k}) = (-6\hat{i} + 0\hat{j} + (6 - 2\lambda)\hat{k}) \] ### Step 2: Set up the coplanarity condition The points A, B, C, and D are coplanar if the scalar triple product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = 0 \). ### Step 3: Calculate the cross product \( \vec{AC} \times \vec{AD} \) Using the determinant method to find the cross product: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -7 & \lambda - 5 & 4 - 2\lambda \\ -6 & 0 & 6 - 2\lambda \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( (\lambda - 5)(6 - 2\lambda) - 0 \cdot (4 - 2\lambda) \right) - \hat{j} \left( -7(6 - 2\lambda) - (-6)(4 - 2\lambda) \right) + \hat{k} \left( -7 \cdot 0 - (-6)(\lambda - 5) \right) \] \[ = \hat{i} \left( 6\lambda - 30 - 12\lambda + 10\lambda \right) - \hat{j} \left( -42 + 14\lambda + 24 - 12\lambda \right) + \hat{k} \left( 6\lambda - 30 \right) \] \[ = \hat{i} \left( -6\lambda - 30 \right) - \hat{j} \left( 2\lambda - 18 \right) + \hat{k} \left( 6\lambda - 30 \right) \] ### Step 4: Dot product with \( \vec{AB} \) Now, we compute \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \): \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (-4\hat{i} - 3\hat{j} + (3 - 2\lambda)\hat{k}) \cdot \left( -6\lambda - 30, -2\lambda + 18, 6\lambda - 30 \right) \] Calculating this dot product gives us: \[ = -4(-6\lambda - 30) - 3(-2\lambda + 18) + (3 - 2\lambda)(6\lambda - 30) \] ### Step 5: Set the equation to zero Setting the above expression to zero will yield a quadratic equation in \( \lambda \): \[ \text{(After simplifying)} \rightarrow 4\lambda^2 - 20\lambda + 36 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \lambda = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 4 \cdot 36}}{2 \cdot 4} \] Calculating the discriminant and solving will give us the values of \( \lambda \). ### Step 7: Calculate the required sum Once we have the values of \( \lambda \), we compute \( \sum_{\lambda \in S} (\lambda + 2)^2 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the point A, B, C and D are 3hati-2hatj -hatk, 2hati+3hatj-4hatk, -hati+hatj+2hatk and 4hati+5hatj +lamda hatk , respectively. If the points A, B, C and D lie on a plane, find the value of lamda .

The position vectors of points A,B,C and D are A=3hati+4hatj+5hatk , B=4hati+5hatj+6hatk , C=7hati+9hatj+3hatk , and D=4hati+6hatj , then the displacement vectors AB and CD are

Consider points A, B, C and D with position vectors 7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + hatk respectively. Then, ABCD is a

The value of ‘ lambda ’ so that the vectors hati - 3̂ hatj + hatk , 2̂ hati + lambda hatj + hatk and 3 hati + hatj - 2 hatk are coplanar, will be

If the position vectors of A, B, C, D are 3hat i +2 hat j+hatk, 4 hati +5hatj+5hatk, 4hati +2hatj -2hatk, 6hati +5hatj-hatk respec-tively then the position vector of the point of intersection of lines AB and CD is

Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are coplanar.

Find the value of lambda such that vectors veca = 2hati + lambda hatj + hatk and vecb = hati + 2hatj + 3hatk are orthogonal.

If a=lambdahati+2hatj-3hatk, b=2hati+lambdahatj-hatk, c=hati+2hatj+hatk and [abc]=6 , then lambda is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. The mean and variance of a set of 15 numbers are 12 and 14 respectivel...

    Text Solution

    |

  2. A pair of dice is thrown 5 times. For each throw, a total of 5 is cons...

    Text Solution

    |

  3. Let the position vectors of the points A, B, C and D be 5hati+5j+2lamb...

    Text Solution

    |

  4. Let I(x)int (x^2 (x sec^2+tanx))/(xtanx +1)^2dx If i(0) =0, then l(pi/...

    Text Solution

    |

  5. Let veca = 2hatj + 3hatj + 4hatk ,vecb= hati - 2hatj - 2hatk and vecc ...

    Text Solution

    |

  6. Let 5f(x)+4f(1/x)=1/x+3 ,x >0 . Then 18int1^2 f(x)dx is equal to

    Text Solution

    |

  7. Statement (P implies Q) vv(R implies Q) Is logically equivalent to

    Text Solution

    |

  8. If the system of equations x+y+az = b 2x + 5y +2z = 6 x + 2y + 3...

    Text Solution

    |

  9. From the top A of a vertical wall AB of height 30 m, the angles of dep...

    Text Solution

    |

  10. One vertex of a rectangular parallelopiped is at the origin O and the ...

    Text Solution

    |

  11. If """""^(2n)C3 : "^nC3 =10 :1, then the ratio (n^2+3n) : (n^2 - 3n+4)...

    Text Solution

    |

  12. If the equation of the plane passing through the line of intersection ...

    Text Solution

    |

  13. The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + … ...

    Text Solution

    |

  14. Let a1,a2, a3 , , ,...., an be n positive consecutive terms of an arit...

    Text Solution

    |

  15. Let A = [a(ij)]2 times 2 ,where a(ij)!=0 for all i,j and A^2=l Let a b...

    Text Solution

    |

  16. The sum of all the roots of the equation |x^2-8x +15|-2x +7 +0 is

    Text Solution

    |

  17. If 2x^(y) +3y^(x) =20, then (dy)/(dx) at (2,2) is equal to :

    Text Solution

    |

  18. Let A ={x in RR : [X+3] + [X+4],le 3} B ={x in RR :3^x(sum(r=1)^oo3/...

    Text Solution

    |

  19. The coefficient of x^18 in the expansion of (x^4-1/x^3)^(15) is .

    Text Solution

    |

  20. Let a in ZZ and [t] be the greatest integer le t. Then the number of ...

    Text Solution

    |