Home
Class 12
MATHS
Let veca = 2hatj + 3hatj + 4hatk ,vecb= ...

Let `veca = 2hatj + 3hatj + 4hatk ,vecb= hati - 2hatj - 2hatk and vecc =-hati+4hatj +3hatk ` . If `vecd` is a vector perpendicular to both `vecb` and `vecc`, and `veca*vecd=18`, then `|veca times vecd|^2` is equal to

A

640

B

680

C

720

D

760

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the vectors and then find the required quantities. ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} - 2\hat{k} \] \[ \vec{c} = -\hat{i} + 4\hat{j} + 3\hat{k} \] ### Step 2: Find the vector \(\vec{d}\) that is perpendicular to both \(\vec{b}\) and \(\vec{c}\) To find a vector \(\vec{d}\) that is perpendicular to both \(\vec{b}\) and \(\vec{c}\), we can use the cross product: \[ \vec{d} = \lambda (\vec{b} \times \vec{c}) \] where \(\lambda\) is a scalar. ### Step 3: Calculate \(\vec{b} \times \vec{c}\) Using the determinant method for the cross product: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -2 \\ -1 & 4 & 3 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} -2 & -2 \\ 4 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -2 \\ -1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ -1 & 4 \end{vmatrix} \] Calculating the minors: \[ = \hat{i}((-2)(3) - (-2)(4)) - \hat{j}((1)(3) - (-2)(-1)) + \hat{k}((1)(4) - (-2)(-1)) \] \[ = \hat{i}(-6 + 8) - \hat{j}(3 - 2) + \hat{k}(4 - 2) \] \[ = 2\hat{i} - 1\hat{j} + 2\hat{k} \] Thus, \[ \vec{b} \times \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} \] ### Step 4: Express \(\vec{d}\) Now we can express \(\vec{d}\): \[ \vec{d} = \lambda (2\hat{i} - \hat{j} + 2\hat{k}) \] ### Step 5: Use the condition \(\vec{a} \cdot \vec{d} = 18\) Calculating \(\vec{a} \cdot \vec{d}\): \[ \vec{a} \cdot \vec{d} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (\lambda(2\hat{i} - \hat{j} + 2\hat{k})) \] \[ = \lambda (2 \cdot 2 + 3 \cdot (-1) + 4 \cdot 2) \] \[ = \lambda (4 - 3 + 8) = \lambda (9) \] Setting this equal to 18: \[ 9\lambda = 18 \Rightarrow \lambda = 2 \] ### Step 6: Find \(\vec{d}\) Substituting \(\lambda\) back into \(\vec{d}\): \[ \vec{d} = 2(2\hat{i} - \hat{j} + 2\hat{k}) = 4\hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 7: Calculate \(|\vec{a} \times \vec{d}|^2\) Now, we need to calculate \(|\vec{a} \times \vec{d}|^2\): \[ \vec{a} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & -2 & 4 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 3 & 4 \\ -2 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 4 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 4 & -2 \end{vmatrix} \] Calculating the minors: \[ = \hat{i}(3 \cdot 4 - 4 \cdot (-2)) - \hat{j}(2 \cdot 4 - 4 \cdot 4) + \hat{k}(2 \cdot (-2) - 3 \cdot 4) \] \[ = \hat{i}(12 + 8) - \hat{j}(8 - 16) + \hat{k}(-4 - 12) \] \[ = 20\hat{i} + 8\hat{j} - 16\hat{k} \] ### Step 8: Calculate the magnitude squared Now, we find \(|\vec{a} \times \vec{d}|^2\): \[ |\vec{a} \times \vec{d}|^2 = (20)^2 + (8)^2 + (-16)^2 \] \[ = 400 + 64 + 256 = 720 \] ### Final Answer Thus, \(|\vec{a} \times \vec{d}|^2 = 720\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and vecc=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and veca=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec c = 3hati + hatj- hatk. Find a vector vecd which is perpendicular to both vec a and vecb and satisfying vecd .vecc=21

Let veca=hati+4hatj+2hatk, vecb=3hati-2hatj+7hatk and vecc= 2hati-hatj+3hatk. Find as vector vecd which is perpendicular to both a veca and vecb and satisfies vecc.vecd=15

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. Let the position vectors of the points A, B, C and D be 5hati+5j+2lamb...

    Text Solution

    |

  2. Let I(x)int (x^2 (x sec^2+tanx))/(xtanx +1)^2dx If i(0) =0, then l(pi/...

    Text Solution

    |

  3. Let veca = 2hatj + 3hatj + 4hatk ,vecb= hati - 2hatj - 2hatk and vecc ...

    Text Solution

    |

  4. Let 5f(x)+4f(1/x)=1/x+3 ,x >0 . Then 18int1^2 f(x)dx is equal to

    Text Solution

    |

  5. Statement (P implies Q) vv(R implies Q) Is logically equivalent to

    Text Solution

    |

  6. If the system of equations x+y+az = b 2x + 5y +2z = 6 x + 2y + 3...

    Text Solution

    |

  7. From the top A of a vertical wall AB of height 30 m, the angles of dep...

    Text Solution

    |

  8. One vertex of a rectangular parallelopiped is at the origin O and the ...

    Text Solution

    |

  9. If """""^(2n)C3 : "^nC3 =10 :1, then the ratio (n^2+3n) : (n^2 - 3n+4)...

    Text Solution

    |

  10. If the equation of the plane passing through the line of intersection ...

    Text Solution

    |

  11. The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + … ...

    Text Solution

    |

  12. Let a1,a2, a3 , , ,...., an be n positive consecutive terms of an arit...

    Text Solution

    |

  13. Let A = [a(ij)]2 times 2 ,where a(ij)!=0 for all i,j and A^2=l Let a b...

    Text Solution

    |

  14. The sum of all the roots of the equation |x^2-8x +15|-2x +7 +0 is

    Text Solution

    |

  15. If 2x^(y) +3y^(x) =20, then (dy)/(dx) at (2,2) is equal to :

    Text Solution

    |

  16. Let A ={x in RR : [X+3] + [X+4],le 3} B ={x in RR :3^x(sum(r=1)^oo3/...

    Text Solution

    |

  17. The coefficient of x^18 in the expansion of (x^4-1/x^3)^(15) is .

    Text Solution

    |

  18. Let a in ZZ and [t] be the greatest integer le t. Then the number of ...

    Text Solution

    |

  19. The number of ways of giving 20 distinct oranges to 3 children such th...

    Text Solution

    |

  20. If the area of the region S = {(x, y) : 2y – y^2 lex ^2 le2y, x .gey} ...

    Text Solution

    |