Home
Class 12
MATHS
If """""^(2n)C3 : "^nC3 =10 :1, then the...

If `"""""^(2n)C_3`` : "^nC_3 =10 :1`, then the ratio `(n^2+3n) : (n^2 - 3n+4)` is

A

`35 : 16`

B

` 27 : 11`

C

`65 : 37`

D

`2 : 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the ratio of binomial coefficients and then use that value to find the ratio of two expressions involving \( n \). ### Step 1: Set up the equation from the given ratio We start with the equation given in the problem: \[ \frac{{^{2n}C_3}}{{^{n}C_3}} = \frac{10}{1} \] ### Step 2: Write the binomial coefficient expressions Using the formula for binomial coefficients, we can express \( ^{2n}C_3 \) and \( ^{n}C_3 \): \[ ^{2n}C_3 = \frac{{(2n)!}}{{3!(2n-3)!}} \quad \text{and} \quad ^{n}C_3 = \frac{{n!}}{{3!(n-3)!}} \] ### Step 3: Substitute into the ratio Substituting these into the ratio gives: \[ \frac{{\frac{{(2n)!}}{{3!(2n-3)!}}}}{{\frac{{n!}}{{3!(n-3)!}}}} = 10 \] ### Step 4: Simplify the equation The \( 3! \) cancels out: \[ \frac{{(2n)!}}{{(2n-3)!}} \cdot \frac{{(n-3)!}}{{n!}} = 10 \] ### Step 5: Expand the factorials We can expand \( (2n)! \) and \( (2n-3)! \): \[ (2n)(2n-1)(2n-2) \cdot \frac{{(n-3)!}}{{n!}} = 10 \] ### Step 6: Simplify further Now, we can express \( \frac{{(n-3)!}}{{n!}} \) as \( \frac{1}{{n(n-1)(n-2)}} \): \[ (2n)(2n-1)(2n-2) \cdot \frac{1}{{n(n-1)(n-2)}} = 10 \] ### Step 7: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ (2n)(2n-1)(2n-2) = 10n(n-1)(n-2) \] ### Step 8: Expand both sides Expanding both sides leads to: \[ 8n^3 - 12n^2 + 4n = 10n^3 - 30n^2 + 20n \] ### Step 9: Rearrange the equation Rearranging gives: \[ 0 = 2n^3 - 18n^2 + 16n \] ### Step 10: Factor out common terms Factoring out \( 2n \): \[ 2n(n^2 - 9n + 8) = 0 \] ### Step 11: Solve the quadratic equation Setting \( n^2 - 9n + 8 = 0 \): Using the quadratic formula: \[ n = \frac{{9 \pm \sqrt{{81 - 32}}}}{2} = \frac{{9 \pm \sqrt{49}}}{2} = \frac{{9 \pm 7}}{2} \] This gives us: \[ n = 8 \quad \text{or} \quad n = 1 \] ### Step 12: Choose the appropriate value of \( n \) Since \( n \) must be greater than or equal to 3 for \( ^{n}C_3 \) to be defined, we take \( n = 8 \). ### Step 13: Calculate the required ratio Now, we need to find the ratio \( (n^2 + 3n) : (n^2 - 3n + 4) \): Substituting \( n = 8 \): \[ n^2 + 3n = 64 + 24 = 88 \] \[ n^2 - 3n + 4 = 64 - 24 + 4 = 44 \] Thus, the ratio is: \[ \frac{88}{44} = 2 : 1 \] ### Final Answer The ratio \( (n^2 + 3n) : (n^2 - 3n + 4) \) is \( 2 : 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos
  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos

Similar Questions

Explore conceptually related problems

If ^(n+1)C_3=2.^nC_2, then n= (A) 3 (B) 4 (C) 5 (D) 6

find n if .^nC_6: ^(n-3)C_3=33:4

If the ratio ^(2n)C_(3).^(n)C_(3) is equal to 11:1 find n

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If ((2n)!)/(3!(2n-3)!) and (n!)/(2!(n-2)!) are in the ratio 44:3 find n.

If the ratio 2nC_(3):^(n)C_(3) is equal to 11:1 find n

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

JEE MAINS PREVIOUS YEAR-JEE MAIN 2023-Question
  1. From the top A of a vertical wall AB of height 30 m, the angles of dep...

    Text Solution

    |

  2. One vertex of a rectangular parallelopiped is at the origin O and the ...

    Text Solution

    |

  3. If """""^(2n)C3 : "^nC3 =10 :1, then the ratio (n^2+3n) : (n^2 - 3n+4)...

    Text Solution

    |

  4. If the equation of the plane passing through the line of intersection ...

    Text Solution

    |

  5. The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + … ...

    Text Solution

    |

  6. Let a1,a2, a3 , , ,...., an be n positive consecutive terms of an arit...

    Text Solution

    |

  7. Let A = [a(ij)]2 times 2 ,where a(ij)!=0 for all i,j and A^2=l Let a b...

    Text Solution

    |

  8. The sum of all the roots of the equation |x^2-8x +15|-2x +7 +0 is

    Text Solution

    |

  9. If 2x^(y) +3y^(x) =20, then (dy)/(dx) at (2,2) is equal to :

    Text Solution

    |

  10. Let A ={x in RR : [X+3] + [X+4],le 3} B ={x in RR :3^x(sum(r=1)^oo3/...

    Text Solution

    |

  11. The coefficient of x^18 in the expansion of (x^4-1/x^3)^(15) is .

    Text Solution

    |

  12. Let a in ZZ and [t] be the greatest integer le t. Then the number of ...

    Text Solution

    |

  13. The number of ways of giving 20 distinct oranges to 3 children such th...

    Text Solution

    |

  14. If the area of the region S = {(x, y) : 2y – y^2 lex ^2 le2y, x .gey} ...

    Text Solution

    |

  15. A circle passing through the point P(alpha, beta) in the first quadran...

    Text Solution

    |

  16. Let the image of the point P(1, 2, 3) in the plane 2x – y + z = 9 be Q...

    Text Solution

    |

  17. Let y = y(x) be a solution of the differential equation (xcosx)dy + (x...

    Text Solution

    |

  18. Let A ={1,2,3,.......,10} and B ={0,1,2,3,4} The number of elements in...

    Text Solution

    |

  19. Let the tangent to the curve x^2 + 2x – 4y + 9 = 0 at the point P(1, 3...

    Text Solution

    |

  20. Let the point (p, p + 1) lie inside the region E ={(x,y) : 3-xleyle sq...

    Text Solution

    |