Home
Class 12
MATHS
Let x=x(t) and y=y(t) be solutions of th...

Let `x=x(t)` and `y=y(t)` be solutions of the differential equations `(dx)/(dt)+ax=0` and `(dy)/(dt)+by=0]`, respectively,`a,b in R` .Given that `x(0)=2,y(0)=1` and `3y(1)=2x(1)` ,the value of "t" ,for which, `[x(t)=y(t)` ,is :

A

`log_(3)4`

B

`log_(4)3`

C

`log_((4)/(3))2`

D

`log_((2)/(3))2`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let the function x(t) and y(t) satisfy the differential equations (dy)/(dt)+ax=0,(dy)/(dt)+by=0. If x(0)=2,y(0)=1 and (x(1))/(y(1))=(3)/(2), then x(t)=y(t) for t=

dx/dt+ax=0, x(0)=2 , y(0)=1 , dy/dt+by=0 3(x(1)=2(y(1) , and find t if x(t)=y(t)

Knowledge Check

  • If x = 3t , y = (1)/(2) ( t + 1) , then the value of t for which x = 2y is

    A
    A)1
    B
    B)`(1)/(2)`
    C
    C)`-1`
    D
    D)`(2)/(3)`
  • Let Y = y(x) be the solution of the differential equation ( dy ) /( dx) + 2y = f(x) , where f(x) = { {:(1, x in [0,1]),( 0, " Otherwise "):} IF y(0) =0 then y ((3)/(2)) is :

    A
    ` ( e^2-1)/( 2e ^3)`
    B
    ` ( e^2-1)/(e^3)`
    C
    `(e ^2 +1)/( 2e ^4)`
    D
    `(1)/(2e)`
  • If the solution of the equation (d^(2)x)/(dt^(2))+4(dx)/(dt)+3x = 0 given that for t = 0, x = 0 and (dx)/(dt) = 12 is in the form x = Ae^(-3t) + Be^(-t) , then

    A
    `A + B = 0`
    B
    `A + B = 12`
    C
    `|AB| = 36`
    D
    `|AB| = 49`
  • Similar Questions

    Explore conceptually related problems

    If x = x(t) is the solution of the differential equation (t 1)dx = (2x (t 1)^4) dt, x(0) = 2 , then, x(1) equals ___________.

    Let y=(x) be the solution of the differential equation (dy)/(dx)+2y=(x) .Where :f(x)={1,x in[0,1] and 0, otherwise If y(0)=0 then y((3)/(2)) is

    If x and y are differentiable functions of t, then (dy)/(dx)=(dy//dt)/(dx//dt)," if "(dx)/(dt)ne0 .

    A curve passing through (2,3) and satisfying the differential equation int_(0)^(x)ty(t)dt=x^(2)y(x),(x>0) is

    Let x=2(t+(1)/(t)) and y=2(t-(1)/(t)),t!=0. Then,the value of (dy)/(dx) at t=2 is