Home
Class 12
MATHS
If a=lim(x rarr0)(sqrt(1+sqrt(1+x^(4)))-...

If `a=lim_(x rarr0)(sqrt(1+sqrt(1+x^(4)))-sqrt(2))/(x^(4))` and `b=lim_(x rarr0)(sin^(2)x)/(sqrt(2)-sqrt(1+cos x))` ,then the value of `ab^(3)` is :

A

25

B

36

C

32

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limits \( a \) and \( b \), we will follow the steps outlined below. ### Step 1: Calculate \( a \) We start with the limit: \[ a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4} \] Since substituting \( x = 0 \) gives us the indeterminate form \( \frac{0}{0} \), we will rationalize the numerator: \[ a = \lim_{x \to 0} \frac{\left(\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}\right) \left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)}{x^4 \left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)} \] This simplifies to: \[ a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4 \left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)} \] This further simplifies to: \[ a = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)} \] Next, we can rationalize again: \[ \sqrt{1 + x^4} - 1 = \frac{x^4}{\sqrt{1 + x^4} + 1} \] Substituting this back into our limit gives: \[ a = \lim_{x \to 0} \frac{x^4}{\sqrt{1 + x^4} + 1} \cdot \frac{1}{x^4 \left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)} \] This simplifies to: \[ a = \lim_{x \to 0} \frac{1}{\left(\sqrt{1 + x^4} + 1\right)\left(\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}\right)} \] Evaluating the limit as \( x \to 0 \): \[ a = \frac{1}{(1 + 1)(1 + \sqrt{2})} = \frac{1}{2(1 + \sqrt{2})} \] ### Step 2: Calculate \( b \) Next, we calculate \( b \): \[ b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}} \] Again, substituting \( x = 0 \) gives us the indeterminate form \( \frac{0}{0} \). We will rationalize the denominator: \[ b = \lim_{x \to 0} \frac{\sin^2 x \left(\sqrt{2} + \sqrt{1 + \cos x}\right)}{(\sqrt{2} - \sqrt{1 + \cos x})(\sqrt{2} + \sqrt{1 + \cos x})} \] The denominator simplifies to: \[ 2 - (1 + \cos x) = 1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right) \] Thus: \[ b = \lim_{x \to 0} \frac{\sin^2 x \left(\sqrt{2} + \sqrt{1 + \cos x}\right)}{2 \sin^2 \left(\frac{x}{2}\right)} \] Using the identity \( \sin^2 x = 4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) \): \[ b = \lim_{x \to 0} \frac{4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) \left(\sqrt{2} + \sqrt{1 + \cos x}\right)}{2 \sin^2 \left(\frac{x}{2}\right)} = \lim_{x \to 0} 2 \cos^2 \left(\frac{x}{2}\right) \left(\sqrt{2} + \sqrt{1 + \cos x}\right) \] As \( x \to 0 \), \( \cos^2 \left(\frac{x}{2}\right) \to 1 \) and \( \sqrt{1 + \cos x} \to \sqrt{2} \): \[ b = 2(1)(\sqrt{2} + \sqrt{2}) = 4\sqrt{2} \] ### Step 3: Calculate \( ab^3 \) Now we compute \( ab^3 \): \[ ab^3 = \left(\frac{1}{2(1 + \sqrt{2})}\right)(4\sqrt{2})^3 \] Calculating \( (4\sqrt{2})^3 = 64 \cdot 2\sqrt{2} = 128\sqrt{2} \): \[ ab^3 = \frac{128\sqrt{2}}{2(1 + \sqrt{2})} = \frac{64\sqrt{2}}{1 + \sqrt{2}} \] Multiplying numerator and denominator by \( 1 - \sqrt{2} \): \[ = \frac{64\sqrt{2}(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})} = \frac{64\sqrt{2} - 128}{-1} = 128 - 64\sqrt{2} \] ### Final Result Thus, the value of \( ab^3 \) is: \[ \boxed{32} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt(1-sqrt(1-x^(2)))

lim_(x rarr0)(sin x)/(sqrt(x))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x)rarr0(sin x)/(sqrt(x))

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x rarr0)(x)/(1-sqrt(1-x))

lim_(x rarr0)(x)/(1-sqrt(1-x))

lim_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Consider the matrix f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] Gi...

    Text Solution

    |

  2. The distance,of the point (7,-2,11) from the line (x-6)/(1)=(y-4)/(0)=...

    Text Solution

    |

  3. If a=lim(x rarr0)(sqrt(1+sqrt(1+x^(4)))-sqrt(2))/(x^(4)) and b=lim(x r...

    Text Solution

    |

  4. Consider the function. f(x)={((a(7x-12-x^(2)))/(babs(x^(2)-7x+12)),x l...

    Text Solution

    |

  5. Four points on a circle are (0,1), (1,0), (0,0), (2k, 3k) find k:

    Text Solution

    |

  6. The number of common terms in the progressions 4,9,14,19,...... ,up to...

    Text Solution

    |

  7. If 3+1/4(3+p)+1/(4^2)(3+2p)+... + oo=8, then p

    Text Solution

    |

  8. Let the set of all a in R such that the equation cos2x+a sin x=2a-7 ha...

    Text Solution

    |

  9. If alpha satisfies the equation x^(2)+x+1=0 and (1+alpha)^(7)=A+B alph...

    Text Solution

    |

  10. Let f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3),x in R .Then f'(10) is equal...

    Text Solution

    |

  11. A fair die is tossed repeatedly until a six is obtained. Let X denote ...

    Text Solution

    |

  12. The least positive integral value of alpha ,for which the angle betwee...

    Text Solution

    |

  13. Let for a differentiable function f:(0,oo)rarr R,f(x)-f(y) ge log(e)((...

    Text Solution

    |

  14. If the solution of the differential equation (2x+3y-2)dx+(4x+6y-7)dy=0...

    Text Solution

    |

  15. Let the area of the region {(x,y):x-2y+4ge 0 , x+2y^(2) ge 0,x+4y^(2...

    Text Solution

    |

  16. Let A=[[2,0,1],[1,1,0],[1,0,1]],B=[B(1),B(2),B(3)] ,where B(1),B(2),B(...

    Text Solution

    |

  17. Let f:R-{-1/2}toR and g:R-{-5/2}toR be defined as f(x)=(2x+3)/(2x+1) g...

    Text Solution

    |

  18. Let alpha=((4!)!)/((4!)^(3!)) and beta=((5!)!)/((5!)^(4!)) .Then:

    Text Solution

    |

  19. Consider the function f:(0,2)rarr R defined by f(x)=(x)/(2)+(2)/(x) an...

    Text Solution

    |

  20. An urn contains 6 white and 9 black balls. Two successive draws of 4 b...

    Text Solution

    |