Home
Class 12
MATHS
The position vectors of the vertices A, ...

The position vectors of the vertices `A,` `B` and `C` of a triangle are `2 hat i-3 hat j+3 hat k,` `2 hat i+2 hat j+3 hat k` and ,`-hat i+hat j+3 hat k` respectively. Let `l` denotes the length of the angle bisector `AD` of `/_BAC` where `D` is on the line segment `BC`, then `2l^(2)`` equals:

A

50

B

45

C

42

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the length of the angle bisector \( AD \) of angle \( \angle BAC \) in triangle \( ABC \) where the vertices are given by their position vectors. 1. **Identify the coordinates of points A, B, and C from the position vectors:** - The position vector of point \( A \) is \( \vec{A} = 2\hat{i} - 3\hat{j} + 3\hat{k} \) which corresponds to the coordinates \( A(2, -3, 3) \). - The position vector of point \( B \) is \( \vec{B} = 2\hat{i} + 2\hat{j} + 3\hat{k} \) which corresponds to the coordinates \( B(2, 2, 3) \). - The position vector of point \( C \) is \( \vec{C} = -\hat{i} + \hat{j} + 3\hat{k} \) which corresponds to the coordinates \( C(-1, 1, 3) \). 2. **Find the coordinates of point D, the point on segment BC:** - The coordinates of point \( D \) can be found using the section formula. Since \( D \) is on segment \( BC \), we need to find the ratio in which \( D \) divides \( BC \). - The coordinates of \( D \) can be calculated as: \[ D = \left( \frac{x_B + x_C}{2}, \frac{y_B + y_C}{2}, z_B \right) = \left( \frac{2 + (-1)}{2}, \frac{2 + 1}{2}, 3 \right) = \left( \frac{1}{2}, \frac{3}{2}, 3 \right) \] 3. **Calculate the length of the angle bisector \( AD \):** - The length \( l \) of the angle bisector \( AD \) can be calculated using the distance formula: \[ l = AD = \sqrt{(x_D - x_A)^2 + (y_D - y_A)^2 + (z_D - z_A)^2} \] - Plugging in the coordinates: \[ l = \sqrt{\left(\frac{1}{2} - 2\right)^2 + \left(\frac{3}{2} + 3\right)^2 + (3 - 3)^2} \] - Simplifying: \[ = \sqrt{\left(-\frac{3}{2}\right)^2 + \left(\frac{9}{2}\right)^2 + 0^2} \] \[ = \sqrt{\frac{9}{4} + \frac{81}{4}} = \sqrt{\frac{90}{4}} = \sqrt{\frac{45}{2}} = \frac{3\sqrt{10}}{2} \] 4. **Calculate \( 2l^2 \):** - Now we calculate \( 2l^2 \): \[ l^2 = \left(\frac{3\sqrt{10}}{2}\right)^2 = \frac{9 \cdot 10}{4} = \frac{90}{4} = \frac{45}{2} \] \[ 2l^2 = 2 \cdot \frac{45}{2} = 45 \] Thus, the final answer is: \[ \boxed{45} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the vectices A, B, C of a triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k respectively. The length of the bisector AD of the angle angle BAC where D is on the line segment BC, is

If the position vectors of the points A, B, C are -2hat i + 2hat j + 2hat k, 2hat i+ 3hat j +3hat k and -hat i 2hat j+3hat k respectively, show that ABC is an isosceles triangle.

Let the position vectors of the vertices "A,B" and "C" of a triangle be 2 hat i+2 hat j+hat k,hat i+2 hat j+2 hat k and 2 hat i+hat j+2 hat k respectively.Let l_(1),l_(2)" and "l_(3) be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides "AB,BC" and "CA" respectively,then l_(1)^(2)+l_(2)^(2)+l_(3)^(2) equals:

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i-3 hat k) are collinear.

The value of p so that vectors 2hat i-hat j+hat k , hat i+2hat j-3hat k and 3hat i+phat j+5hat k are coplanar is

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively from the vertices of a right angled triangle.

The position vectors of the points A,B,C are 2hat i+hat j-hat k,3hat i-2hat j+hat k and hat i+4hat j-hat k respectively.These pooints Form an isosceles triangle Form a right triangle Are collinear Form a scalene triangle

Show that the points A,B and C with position vectors,vec a=3hat i-4hat j-4hat kvec b=2hat i-hat j+hat k and vec c=hat i-3hat j-5hat k respectively form the vertices of a right angled triangle.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Considering only the principal values of inverse trigonometric functio...

    Text Solution

    |

  2. Let the position vectors of the vertices "A,B" and "C" of a triangle b...

    Text Solution

    |

  3. The position vectors of the vertices A, B and C of a triangle are 2 ha...

    Text Solution

    |

  4. If 20th term from the end of the progression 20, "19"1/4, "18"1/2,"17"...

    Text Solution

    |

  5. For 0 lt alt 1 ,the value of the integral int(0)^( pi)(dx)/(1-2a cos x...

    Text Solution

    |

  6. Let the image of the point "(1,0,7)" in the line (x)/(1)=(y-1)/(2)=(z-...

    Text Solution

    |

  7. If 2tan^2theta-5sectheta=1 has exactly 7 solutions in [0,(npi)/2] for ...

    Text Solution

    |

  8. Let e(1) be the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(9)...

    Text Solution

    |

  9. lim(x rarr0)(3+alpha sin x+beta cos x+log(e)(1-x))/(3tan^(2)x)=(1)/(3)...

    Text Solution

    |

  10. The values of alpha ,for which [[1,(3)/(2),alpha+(3)/(2)],[1,(1)/(3),a...

    Text Solution

    |

  11. The integral int((x^(8)-x^(2))dx)/((x^(12)+3x^(6)+1)tan^(-1)(x^(3)+(1)...

    Text Solution

    |

  12. Let g(x)=3f((x)/(3))+f(3-x) and f''(x)>0 for all x in(0,3). If "g" is ...

    Text Solution

    |

  13. If y=y(x) is the solution curve of the differential equation (x^(2)-4)...

    Text Solution

    |

  14. Let "A" and "B" be two finite sets with "m" and "n" elements respectiv...

    Text Solution

    |

  15. If the point (a^2,a+1) lies in the angle between the lines 3x-y+1=0 an...

    Text Solution

    |

  16. If alpha,beta are the roots of the equation,x^(2)-x-1=0 and S(n)=2023 ...

    Text Solution

    |

  17. If the solution curve,of the differential equation (dy)/(dx)=(x+y-2)/(...

    Text Solution

    |

  18. Consider a circle (x-alpha)^(2)+(y-beta)^(2)=50 ,where alpha,beta>0 .I...

    Text Solution

    |

  19. Let the complex numbers alpha and (1)/(bar(alpha)) lie on the circles ...

    Text Solution

    |

  20. The mean and standard deviation of "15" observations were found to be ...

    Text Solution

    |