Home
Class 12
MATHS
Suppose f(x)=((2^(x)+2^(-x))tan x sqrt(t...

Suppose `f(x)=((2^(x)+2^(-x))tan x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3))` .Then the value of `f'(0)` is equal to

A

`sqrtx`

B

0

C

`pi/2`

D

`sqrtpi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(0) \) for the function \[ f(x) = \frac{(2^x + 2^{-x}) \tan x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3} \] we will use the definition of the derivative: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \] ### Step 1: Calculate \( f(0) \) First, we need to find \( f(0) \): \[ f(0) = \frac{(2^0 + 2^{0}) \tan(0) \sqrt{\tan^{-1}(0^2 - 0 + 1)}}{(7(0)^2 + 3(0) + 1)^3} \] Calculating each part: - \( 2^0 + 2^0 = 1 + 1 = 2 \) - \( \tan(0) = 0 \) - \( \tan^{-1}(0^2 - 0 + 1) = \tan^{-1}(1) = \frac{\pi}{4} \) - Therefore, \( \sqrt{\tan^{-1}(1)} = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2} \) - The denominator becomes \( (7(0)^2 + 3(0) + 1)^3 = 1^3 = 1 \) Putting it all together: \[ f(0) = \frac{2 \cdot 0 \cdot \frac{\sqrt{\pi}}{2}}{1} = 0 \] ### Step 2: Calculate \( f(h) \) Next, we need to find \( f(h) \): \[ f(h) = \frac{(2^h + 2^{-h}) \tan(h) \sqrt{\tan^{-1}(h^2 - h + 1)}}{(7h^2 + 3h + 1)^3} \] ### Step 3: Substitute into the derivative formula Now we substitute \( f(h) \) and \( f(0) \) into the derivative formula: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - 0}{h} = \lim_{h \to 0} \frac{f(h)}{h} \] ### Step 4: Simplify \( f(h) \) We need to analyze \( f(h) \) as \( h \to 0 \): - As \( h \to 0 \), \( 2^h + 2^{-h} \to 2 \) - \( \tan(h) \approx h \) - \( h^2 - h + 1 \to 1 \) so \( \tan^{-1}(h^2 - h + 1) \to \tan^{-1}(1) = \frac{\pi}{4} \) and thus \( \sqrt{\tan^{-1}(h^2 - h + 1)} \to \frac{\sqrt{\pi}}{2} \) - The denominator \( 7h^2 + 3h + 1 \to 1 \) so \( (7h^2 + 3h + 1)^3 \to 1^3 = 1 \) Putting this together: \[ f(h) \approx \frac{(2)(h)\left(\frac{\sqrt{\pi}}{2}\right)}{1} = h\sqrt{\pi} \] ### Step 5: Substitute back into the limit Now we substitute back into our limit: \[ f'(0) = \lim_{h \to 0} \frac{h\sqrt{\pi}}{h} = \sqrt{\pi} \] ### Conclusion Thus, the value of \( f'(0) \) is: \[ \boxed{\sqrt{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

f(x)=(2^x+2^(-x)(tanx)sqrt(tan^-1(2x^2-3x+1)))/(7x^2-3x-1)^3 , then find f'(0)

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

IF f(x) = tan x+e^(-2x)-7x^(3) , then what is the value of f'(0)?

If f(x)=(log_(cot x)tan x)(log_(tan x)cot x)^(-1)+tan^(-1)((x)/(sqrt(4-x^(2)))) then f'(0) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If "AA"^T=I where A^T is transpose of matrix A then, 1/2A[(A+A^T)^2+(A...

    Text Solution

    |

  2. What is probability of getting '2' in even number of throws of a die i...

    Text Solution

    |

  3. Suppose f(x)=((2^(x)+2^(-x))tan x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+...

    Text Solution

    |

  4. In an A.P.,the sixth term a(6)=2 .If the product a(1)a(4)a(5) is the g...

    Text Solution

    |

  5. In a /ABC ,suppose y=x is the equation of the bisector of the angle "B...

    Text Solution

    |

  6. If in a G.P.of "64" terms,the sum of all the terms is "7" times the su...

    Text Solution

    |

  7. Let vec a,vec b and vec c be three non-zero vectors such that vec b an...

    Text Solution

    |

  8. The area (in sq.units) of the part of the circle x^(2)+y^(2)=169 which...

    Text Solution

    |

  9. If the solution curve y=y(x) of the differential equation (1+y^(2))(1+...

    Text Solution

    |

  10. If (""^(11)C(1))/(2)+(""^(11)C(2))/(3)+...+("^(11)C(9))/(10)=(n)/(m) w...

    Text Solution

    |

  11. Equations of two diameters of a circle are 2x-3y=5 and 3x-4y=7 .The li...

    Text Solution

    |

  12. Let f(x)=2^(x)-x^(2),x in R .If "m" and "n" are respectively the numbe...

    Text Solution

    |

  13. If the points of intersection of two distinct conics x^(2)+y^(2)=4b" a...

    Text Solution

    |

  14. All the letters of the word "GTWENTY" are written in all possible ways...

    Text Solution

    |

  15. A line with direction ratios "2,1,2" meets the lines x=y+2=z and x+2=2...

    Text Solution

    |

  16. If the mean and variance of the data 65,68,58,44,48,45,60,alpha,beta,6...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-x+2=0 with Im(alpha)...

    Text Solution

    |

  18. The value of lim(n rarr oo)sum(k=1)^(n)(n^(3))/((n^(2)+k^(2))(n^(2)+3k...

    Text Solution

    |

  19. Let g:R rarr R be a non constant twice differentiable function such th...

    Text Solution

    |

  20. If the circles (x+1)^(2)+(y+2)^(2)=r^(2) and x^(2)+y^(2)-4x-4y+4=0 int...

    Text Solution

    |