Home
Class 12
MATHS
The value of lim(n rarr oo)sum(k=1)^(n)(...

The value of `lim_(n rarr oo)sum_(k=1)^(n)(n^(3))/((n^(2)+k^(2))(n^(2)+3k^(2)))` is:

A

`(13(2sqrt(3)-3)pi)/(8)`

B

`((2sqrt(3)+3)pi)/(24)`

C

`(pi)/(8(2sqrt(3)+3))`

D

`(13 pi)/(8(4sqrt(3)+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{(n^2 + k^2)(n^2 + 3k^2)}, \] we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the limit expression. Notice that both terms in the denominator contain \(n^2\). We can factor \(n^2\) out of each term in the denominator: \[ = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{n^2 \left(1 + \frac{k^2}{n^2}\right) \cdot n^2 \left(1 + \frac{3k^2}{n^2}\right)}. \] This simplifies to: \[ = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{n^4 \left(1 + \frac{k^2}{n^2}\right) \left(1 + \frac{3k^2}{n^2}\right)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n \left(1 + \frac{k^2}{n^2}\right) \left(1 + \frac{3k^2}{n^2}\right)}. \] ### Step 2: Change of variables Next, we can make a substitution to convert the sum into a Riemann integral. Let \(x = \frac{k}{n}\). Then, \(k = nx\) and \(dk = n \, dx\). The limits of \(k\) from \(1\) to \(n\) correspond to \(x\) from \(\frac{1}{n}\) to \(1\). Thus, we can rewrite the sum as: \[ \sum_{k=1}^{n} \frac{1}{n \left(1 + \frac{k^2}{n^2}\right) \left(1 + \frac{3k^2}{n^2}\right)} \approx \int_0^1 \frac{1}{\left(1 + x^2\right) \left(1 + 3x^2\right)} \, dx. \] ### Step 3: Evaluate the integral Now we need to evaluate the integral: \[ \int_0^1 \frac{1}{(1 + x^2)(1 + 3x^2)} \, dx. \] We can use partial fraction decomposition: \[ \frac{1}{(1 + x^2)(1 + 3x^2)} = \frac{A}{1 + x^2} + \frac{B}{1 + 3x^2}. \] Multiplying through by the denominator \((1 + x^2)(1 + 3x^2)\) gives: \[ 1 = A(1 + 3x^2) + B(1 + x^2). \] Expanding and equating coefficients, we can solve for \(A\) and \(B\). ### Step 4: Solve for coefficients Setting \(x = 0\): \[ 1 = A + B \implies A + B = 1. \] Setting \(x^2 = 1\): \[ 1 = A(1 + 3) + B(1 + 1) \implies 4A + 2B = 1. \] Now we have the system of equations: 1. \(A + B = 1\) 2. \(4A + 2B = 1\) From the first equation, \(B = 1 - A\). Substituting into the second equation: \[ 4A + 2(1 - A) = 1 \implies 4A + 2 - 2A = 1 \implies 2A = -1 \implies A = \frac{1}{2}, B = \frac{1}{2}. \] ### Step 5: Integrate Now we can rewrite the integral: \[ \int_0^1 \left(\frac{1/2}{1 + x^2} + \frac{1/2}{1 + 3x^2}\right) \, dx = \frac{1}{2} \int_0^1 \frac{1}{1 + x^2} \, dx + \frac{1}{2} \int_0^1 \frac{1}{1 + 3x^2} \, dx. \] The first integral evaluates to: \[ \frac{1}{2} \left[\tan^{-1}(x)\right]_0^1 = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8}. \] The second integral evaluates to: \[ \frac{1}{2} \left[\frac{1}{\sqrt{3}} \tan^{-1}(\sqrt{3}x)\right]_0^1 = \frac{1}{2\sqrt{3}} \cdot \frac{\pi}{3} = \frac{\pi}{6\sqrt{3}}. \] ### Final Step: Combine results Combining both results gives: \[ \frac{\pi}{8} + \frac{\pi}{6\sqrt{3}}. \] ### Conclusion Thus, the final value of the limit is: \[ \frac{\pi}{8} + \frac{\pi}{6\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

The vlaue of lim_(n rarroo) sum_(k=1)^n frac{n^3}{(n^2+k^2)(n^2+3k^2) is

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If the mean and variance of the data 65,68,58,44,48,45,60,alpha,beta,6...

    Text Solution

    |

  2. Let alpha,beta be the roots of the equation x^(2)-x+2=0 with Im(alpha)...

    Text Solution

    |

  3. The value of lim(n rarr oo)sum(k=1)^(n)(n^(3))/((n^(2)+k^(2))(n^(2)+3k...

    Text Solution

    |

  4. Let g:R rarr R be a non constant twice differentiable function such th...

    Text Solution

    |

  5. If the circles (x+1)^(2)+(y+2)^(2)=r^(2) and x^(2)+y^(2)-4x-4y+4=0 int...

    Text Solution

    |

  6. vec a = a1 hat i + a2 hat j + a3 hat k |a| = 1 , &, vec a. vec b = 2...

    Text Solution

    |

  7. If Sn denotes sum of first n terms of an A.P. such that, S(20) = 790, ...

    Text Solution

    |

  8. f(x)=|[2cos^(4)x,2sin^(4)x,3+sin^(2)2x],[3+2cos^(4)x,2sin^(4)x,sin^(2)...

    Text Solution

    |

  9. If z = x + iy, xy ne 0 satisfy the equation z^2 + i overline z = 0, th...

    Text Solution

    |

  10. Let "M" denote the median of the following frequency distribution The...

    Text Solution

    |

  11. Let y=y(x) be the solution of the differential equation sec xdy+{2(1-x...

    Text Solution

    |

  12. If 2sin^(3)x+sin2x cos x+4sin x-4=0 has exactly "3" solutions in the i...

    Text Solution

    |

  13. Let A(2, 3, 5) and C(-3, 4, -2) be opposite vertices of parallelogram ...

    Text Solution

    |

  14. If the domain of the function f(x)=cos^(-1)((2-|x|)/(4))+{log(e)(3-x)}...

    Text Solution

    |

  15. The area (in square units) of the region bounded by the parabola y^(2)...

    Text Solution

    |

  16. A triangle has one vertex at (0,0) and the other two on the graph of y...

    Text Solution

    |

  17. Let f:[-(pi)/(2),(pi)/(2)]rarr R be a differentiable function such tha...

    Text Solution

    |

  18. If the length of the minor axis of an ellipse is equal to half of the ...

    Text Solution

    |

  19. Two integers xa n dy are chosen with replacement out of the set {0,...

    Text Solution

    |

  20. A line passing through the point "A(9,0)" makes an angle of 30^(@) wit...

    Text Solution

    |