Home
Class 12
MATHS
LetA=[[2, 1, 2], [6, 2, 11], [3, 3, 2]] ...

Let`A=[[2, 1, 2], [6, 2, 11], [3, 3, 2]]` and `P=[[1, 2, 0], [5, 0, 2], [7, 1, 5]]`. The sum of the prime factors of is equal to

A

26

B

27

C

66

D

23

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the prime factors of a certain determinant derived from the matrices \( A \) and \( P \). Let's go through the steps systematically. ### Step 1: Define the matrices We have the following matrices: \[ A = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5 \end{bmatrix} \] ### Step 2: Compute \( 2I \) We need to compute \( 2I \), where \( I \) is the identity matrix of the same order as \( A \): \[ 2I = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] ### Step 3: Compute \( A - 2I \) Now, we subtract \( 2I \) from \( A \): \[ A - 2I = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0 \end{bmatrix} \] ### Step 4: Compute the determinant of \( A - 2I \) We need to find the determinant of the matrix \( A - 2I \): \[ \text{det}(A - 2I) = \begin{vmatrix} 0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0 \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei-fh) - b(di-fg) + c(dh-eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. Calculating the determinant: \[ = 0 \cdot (0 \cdot 0 - 11 \cdot 3) - 1 \cdot (6 \cdot 0 - 11 \cdot 3) + 2 \cdot (6 \cdot 3 - 0 \cdot 3) \] \[ = 0 - 1 \cdot (-33) + 2 \cdot 18 \] \[ = 33 + 36 = 69 \] ### Step 5: Find the prime factors of 69 Now, we need to find the prime factors of 69. The prime factorization of 69 is: \[ 69 = 3 \times 23 \] ### Step 6: Sum the prime factors Now, we sum the prime factors: \[ 3 + 23 = 26 \] ### Final Result Thus, the sum of the prime factors of the determinant \( \text{det}(A - 2I) \) is: \[ \boxed{26} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2, 1]] , then

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then (A+B)^(prime)=A^(prime)-B^(prime) is true or false

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

If A=[[1,2,5],[3,4,6]] and B=[[4,0],[2,1],[1,1]] then find AB

If =[[1,4,-1],[2,6,5]] and B=[[3,-2,-6],[2,0,-7]] , find A+B and A-B

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then verify that (i) (A+B)^(prime)=A^(prime)+B^(prime) (ii) (A-B)^(prime)=A^(prime)-B^(prime)

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. A group of "40" students appeared in an examination of "3" subjects - ...

    Text Solution

    |

  2. Let the latus ractum of the hyperbola (x^(2))/(9)-(y^(2))/(b^(2))=1 su...

    Text Solution

    |

  3. LetA=[[2, 1, 2], [6, 2, 11], [3, 3, 2]] and P=[[1, 2, 0], [5, 0, 2], [...

    Text Solution

    |

  4. Number of ways of arranging 8 identical books into 4 identical shelves...

    Text Solution

    |

  5. If p (3, 2, 3), Q (4, 6, 2), R (7, 3, 2) are the vertices of DeltaPQR,...

    Text Solution

    |

  6. If the mean and variance of five observations are (24)/5 and (194)/(25...

    Text Solution

    |

  7. The function f(x) = 2x + 3^(2/3), x in, has

    Text Solution

    |

  8. Let r and respectively be the modulus and amplitude of the complex num...

    Text Solution

    |

  9. The sum of the solutions x in of the equation frac{3 cos 2x + cos^3 2...

    Text Solution

    |

  10. Let vec (OA)= vec a, vec (OB) = 12 vec a + 4 vec b and vec (OC) = vec ...

    Text Solution

    |

  11. If log a, log b, and log c are in A.P. and also log a - log 2b, log 2b...

    Text Solution

    |

  12. If int((sin^((3)/(2))x+cos^((3)/(2))x)dx)/(sqrt(sin^(3)x cos^(3)x sin(...

    Text Solution

    |

  13. The distance of the point (2, 3) from the line 2x – 3y + 28 = 0, measu...

    Text Solution

    |

  14. If sin (y/x) = loge |x| | (alpha)/2 is the solution of the differentia...

    Text Solution

    |

  15. If a1, a2............ are in G.P, such that a1=1/8, a1nea2 and every t...

    Text Solution

    |

  16. Let A be the point of intersection of the lines 3x + 2y = 14, 5x – y =...

    Text Solution

    |

  17. Let cos(2sin^(-1)x)=1/9xgt0 holds true for x=m/n, where m and n are co...

    Text Solution

    |

  18. The function f(x) =frac{x}{x^2-6x-16}, x in-{-2, 8}

    Text Solution

    |

  19. Let y =loge(frac{1-x^2}{1+x^2}), -1 < x < 1. Then at x = 1/2 the value...

    Text Solution

    |

  20. If R is the smallest equivalence relation on the set {1, 2, 3, 4} such...

    Text Solution

    |