Home
Class 12
MATHS
Let vec (OA)= vec a, vec (OB) = 12 vec a...

Let `vec (OA)= vec a`, `vec (OB) = 12 vec a + 4 vec b` and `vec (OC) = vec b`, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then `frac"{ area of quadrilateral OABC}""{area of S}"` is equal to ___

A

6

B

10

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the area of quadrilateral OABC to the area of the parallelogram S formed by vectors OA and OC. ### Step-by-Step Solution: 1. **Define Vectors**: - Let \(\vec{OA} = \vec{a}\) - Let \(\vec{OB} = 12\vec{a} + 4\vec{b}\) - Let \(\vec{OC} = \vec{b}\) 2. **Identify Points**: - Point O is the origin (0,0). - Point A corresponds to the vector \(\vec{a}\). - Point B corresponds to the vector \(12\vec{a} + 4\vec{b}\). - Point C corresponds to the vector \(\vec{b}\). 3. **Find Vectors for Quadrilateral OABC**: - The vector \(\vec{AB} = \vec{OB} - \vec{OA} = (12\vec{a} + 4\vec{b}) - \vec{a} = 11\vec{a} + 4\vec{b}\) - The vector \(\vec{CB} = \vec{OB} - \vec{OC} = (12\vec{a} + 4\vec{b}) - \vec{b} = 12\vec{a} + 3\vec{b}\) 4. **Calculate the Area of Quadrilateral OABC**: - The area of a quadrilateral can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \left| \vec{d_1} \times \vec{d_2} \right| \] where \(\vec{d_1}\) and \(\vec{d_2}\) are the diagonals. - The diagonals are: - \(\vec{AC} = \vec{OC} - \vec{OA} = \vec{b} - \vec{a}\) - \(\vec{OB} = 12\vec{a} + 4\vec{b}\) - Thus, the area of quadrilateral OABC is: \[ \text{Area}_{OABC} = \frac{1}{2} \left| (12\vec{a} + 4\vec{b}) \times (\vec{b} - \vec{a}) \right| \] 5. **Calculate the Cross Product**: - We compute: \[ (12\vec{a} + 4\vec{b}) \times (\vec{b} - \vec{a}) = 12\vec{a} \times \vec{b} - 12\vec{a} \times \vec{a} + 4\vec{b} \times \vec{b} - 4\vec{b} \times \vec{a} \] - Since \(\vec{a} \times \vec{a} = 0\) and \(\vec{b} \times \vec{b} = 0\), we simplify to: \[ = 12\vec{a} \times \vec{b} - 4\vec{b} \times \vec{a} = 12\vec{a} \times \vec{b} + 4\vec{a} \times \vec{b} = 16\vec{a} \times \vec{b} \] - Therefore, \[ \text{Area}_{OABC} = \frac{1}{2} \left| 16\vec{a} \times \vec{b} \right| = 8 \left| \vec{a} \times \vec{b} \right| \] 6. **Calculate the Area of Parallelogram S**: - The area of parallelogram S formed by vectors \(\vec{OA}\) and \(\vec{OC}\) is given by: \[ \text{Area}_S = \left| \vec{a} \times \vec{b} \right| \] 7. **Find the Ratio**: - Now, we find the ratio of the areas: \[ \frac{\text{Area}_{OABC}}{\text{Area}_S} = \frac{8 \left| \vec{a} \times \vec{b} \right|}{\left| \vec{a} \times \vec{b} \right|} = 8 \] ### Final Answer: The ratio \(\frac{\text{Area of quadrilateral OABC}}{\text{Area of S}} = 8\). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let vec OA=vec a,vec OB=100vec a+2vec b and vec OC=vec b where O,A,C are non collinear points.Let P denotes the area of the parallelogram with vec O Anad vec OC as adjacent sides and Q denotes the area of the quadrilateral OABC If Q=lambda P Find the value of lambda

If OACB is a parallelogram with vec OC=vec a and vec AB=vec b, then vec OA is equal to

vec OA=vec a,vec OB=10vec a+2vec b, and vec OC=b where O is origin.Let p denote the area of th quadrilateral OABC and q denote the area of teh parallelogram with OA and OC as adjacent sides.Prove that p=6q.

ABCD is a quadrilateral with vec AB=vec a,vec AD=vec b and vec AC=2vec a+3vec b If its area is alpha xx the area of the parallelogram with AB and AD as adjacent sides,then alpha=

If 2vec AC=3vec CB, then prove that 2vec OA=3vec CB then prove that 2vec OA+3vec OB=5vec OC where O is the origin.

If | vec AO + vec OB | = | vec BO + vec OC |, then A, B, C form

Let vec(OA)=vecas, vec(OB)=10veca+2vecb and vec(OC)=vecb where O A and C are non collinear points. Let p denote the area of the quadrilaterial OABCand q denote the area of the parallelogram with OA and OC as adjacent sides. Then p/q= (A) 2 (B) 6 (C) 1 (D) 1/2|veca+vecb+vecc]

If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b, " then " vec(OA)=

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

What will be the angle between vec A and vec B , if the area of the parallelogram drawn with vec A and vec B as its adjacent sides is 1/2 AB ?

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let r and respectively be the modulus and amplitude of the complex num...

    Text Solution

    |

  2. The sum of the solutions x in of the equation frac{3 cos 2x + cos^3 2...

    Text Solution

    |

  3. Let vec (OA)= vec a, vec (OB) = 12 vec a + 4 vec b and vec (OC) = vec ...

    Text Solution

    |

  4. If log a, log b, and log c are in A.P. and also log a - log 2b, log 2b...

    Text Solution

    |

  5. If int((sin^((3)/(2))x+cos^((3)/(2))x)dx)/(sqrt(sin^(3)x cos^(3)x sin(...

    Text Solution

    |

  6. The distance of the point (2, 3) from the line 2x – 3y + 28 = 0, measu...

    Text Solution

    |

  7. If sin (y/x) = loge |x| | (alpha)/2 is the solution of the differentia...

    Text Solution

    |

  8. If a1, a2............ are in G.P, such that a1=1/8, a1nea2 and every t...

    Text Solution

    |

  9. Let A be the point of intersection of the lines 3x + 2y = 14, 5x – y =...

    Text Solution

    |

  10. Let cos(2sin^(-1)x)=1/9xgt0 holds true for x=m/n, where m and n are co...

    Text Solution

    |

  11. The function f(x) =frac{x}{x^2-6x-16}, x in-{-2, 8}

    Text Solution

    |

  12. Let y =loge(frac{1-x^2}{1+x^2}), -1 < x < 1. Then at x = 1/2 the value...

    Text Solution

    |

  13. If R is the smallest equivalence relation on the set {1, 2, 3, 4} such...

    Text Solution

    |

  14. An integer is chosen at random from the integers 1, 2, 3, …, 50. The p...

    Text Solution

    |

  15. Let a unit vector hat u = x hat i + y hat j + z hat k make angles (pi)...

    Text Solution

    |

  16. Let alpha, beta be the roots of the equationx^2 - sqrt 6 x + 3 = 0 suc...

    Text Solution

    |

  17. Let for any three distinct consecutive terms a, b, c of an A.P, the li...

    Text Solution

    |

  18. Let P(alpha, beta) be a point on the parabola y^2= 4x. If P also lies ...

    Text Solution

    |

  19. If int(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha + beta sqrt 2 + gamma ...

    Text Solution

    |

  20. Let the area of the region {(x, y): 0 le x le 3, 0 le y le min{x^2+ 2,...

    Text Solution

    |