Home
Class 12
MATHS
Let y =loge(frac{1-x^2}{1+x^2}), -1 < x ...

Let `y =log_e(frac{1-x^2}{1+x^2})`, `-1 < x < 1`. Then at `x = 1/2` the value of `225(y' - y'')` is equal to

A

732

B

746

C

742

D

736

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 225(y' - y'') \) at \( x = \frac{1}{2} \) where \( y = \log_e\left(\frac{1 - x^2}{1 + x^2}\right) \). ### Step 1: Differentiate \( y \) Given: \[ y = \log_e\left(\frac{1 - x^2}{1 + x^2}\right) \] Using the properties of logarithms, we can rewrite \( y \): \[ y = \log_e(1 - x^2) - \log_e(1 + x^2) \] Now, we differentiate \( y \): \[ y' = \frac{d}{dx} \left(\log_e(1 - x^2)\right) - \frac{d}{dx} \left(\log_e(1 + x^2)\right) \] Using the derivative of \( \log_e(u) \) which is \( \frac{1}{u} \cdot \frac{du}{dx} \): \[ y' = \frac{-2x}{1 - x^2} - \frac{2x}{1 + x^2} \] ### Step 2: Simplify \( y' \) Now, we need to combine the two fractions: \[ y' = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 - x^2)(1 + x^2)} \] \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 - x^2)(1 + x^2)} \] \[ = \frac{-4x}{1 - x^4} \] ### Step 3: Differentiate \( y' \) to find \( y'' \) Now we differentiate \( y' \): \[ y' = \frac{-4x}{1 - x^4} \] Using the quotient rule: \[ y'' = \frac{(1 - x^4)(-4) - (-4x)(-4x^3)}{(1 - x^4)^2} \] \[ = \frac{-4(1 - x^4) - 16x^4}{(1 - x^4)^2} \] \[ = \frac{-4 + 4x^4 - 16x^4}{(1 - x^4)^2} \] \[ = \frac{-4 - 12x^4}{(1 - x^4)^2} \] ### Step 4: Evaluate \( y' \) and \( y'' \) at \( x = \frac{1}{2} \) Now we substitute \( x = \frac{1}{2} \): \[ y' \left(\frac{1}{2}\right) = \frac{-4 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^4} = \frac{-2}{1 - \frac{1}{16}} = \frac{-2}{\frac{15}{16}} = -\frac{32}{15} \] \[ y'' \left(\frac{1}{2}\right) = \frac{-4 - 12 \cdot \left(\frac{1}{2}\right)^4}{(1 - \left(\frac{1}{2}\right)^4)^2} = \frac{-4 - 12 \cdot \frac{1}{16}}{(1 - \frac{1}{16})^2} = \frac{-4 - \frac{12}{16}}{\left(\frac{15}{16}\right)^2} \] \[ = \frac{-4 - \frac{3}{4}}{\frac{225}{256}} = \frac{-\frac{16}{4} - \frac{3}{4}}{\frac{225}{256}} = \frac{-\frac{19}{4}}{\frac{225}{256}} = -\frac{19 \cdot 256}{4 \cdot 225} = -\frac{19 \cdot 64}{225} \] ### Step 5: Calculate \( 225(y' - y'') \) Now we calculate \( y' - y'' \): \[ y' - y'' = -\frac{32}{15} + \frac{19 \cdot 64}{225} \] Finding a common denominator (225): \[ = -\frac{32 \cdot 15}{225} + \frac{19 \cdot 64}{225} = \frac{-480 + 1216}{225} = \frac{736}{225} \] Finally, we calculate: \[ 225(y' - y'') = 225 \cdot \frac{736}{225} = 736 \] ### Final Answer The value of \( 225(y' - y'') \) at \( x = \frac{1}{2} \) is \( \boxed{736} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let frac{x^2}{a^2}+ frac{y^2}{b^2}=1 , a gt b be an ellipse, whose eccentricity is frac{1}{sqrt 2} and the length of the latus rectum is sqrt (14) . Then the square of the eccentricity of frac{x^2}{a^2}- frac{y^2}{b^2}=1 is

y=log_e((1+x^2)/(1-x^2)) then find 225(y''-y') at x=1/2

If lim_(xrarr0) frac{ax^2e^x-b log_e(1+x)+cxe^(-x)}{x^2 sinx}=1 then the value of 16(a^2+b^2+c^2) is

Let y = y(x) be the solution of the differential equation frac{dy}{dx} = 2x (x y)^3 – x (x y) – 1, y(0) = 1 , Then (frac{1}{sqrt 2} y (frac{1}{sqrt 2}))^2 equals.

Let y=log\ (1)/(1+x) Statement-1: y'(1)=-1/2 Statement-2: xy'+1=e^(y)

Prove that yz^(log frac{y}{z}) *(zx)^(log frac{z}{x})* (xy)^(log frac{x}{y}) =1

lim_( x to 1) {log_e (e^(x(x-1))-e^(x(1-x))) - log_e(4x(x-1))} is equal to :

log_(e)sin^(-1)x^(2)(cot^(-1)x^(2))

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

Let f(x) = e^(sqrt(x^(2)-1)). log (x-1) . Then dom (f ) =?

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let cos(2sin^(-1)x)=1/9xgt0 holds true for x=m/n, where m and n are co...

    Text Solution

    |

  2. The function f(x) =frac{x}{x^2-6x-16}, x in-{-2, 8}

    Text Solution

    |

  3. Let y =loge(frac{1-x^2}{1+x^2}), -1 < x < 1. Then at x = 1/2 the value...

    Text Solution

    |

  4. If R is the smallest equivalence relation on the set {1, 2, 3, 4} such...

    Text Solution

    |

  5. An integer is chosen at random from the integers 1, 2, 3, …, 50. The p...

    Text Solution

    |

  6. Let a unit vector hat u = x hat i + y hat j + z hat k make angles (pi)...

    Text Solution

    |

  7. Let alpha, beta be the roots of the equationx^2 - sqrt 6 x + 3 = 0 suc...

    Text Solution

    |

  8. Let for any three distinct consecutive terms a, b, c of an A.P, the li...

    Text Solution

    |

  9. Let P(alpha, beta) be a point on the parabola y^2= 4x. If P also lies ...

    Text Solution

    |

  10. If int(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha + beta sqrt 2 + gamma ...

    Text Solution

    |

  11. Let the area of the region {(x, y): 0 le x le 3, 0 le y le min{x^2+ 2,...

    Text Solution

    |

  12. Let O be the origin, and M and N be the points on the lines frac{x-5}{...

    Text Solution

    |

  13. Let f(x) =sqrt ((lim(r-> x) {2r^2[f(r))^2 - f(x) f(r)]/(r^2-x^2)-r^3e^...

    Text Solution

    |

  14. Remainder when 64^(32^(32)is divided by 9 is equal to .

    Text Solution

    |

  15. Let the set C = {(x, y) | x^2- 2^y = 2023, x, y in }. Then sum((x,y) i...

    Text Solution

    |

  16. Let the slope of the line 45x + 5y + 3 = 0 be 27 r1 + (9r2)/ 2 for som...

    Text Solution

    |

  17. Let "P" be a point on the hyperbola H:(x^(2))/(9)-(y^(2))/(4)=1 ,in th...

    Text Solution

    |

  18. Let f(x)=(x+3)^(2)(x-2)^(3),x in[-4,4] .If "M" and "m" are the maximum...

    Text Solution

    |

  19. Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1)) is differentiable everywhere. T...

    Text Solution

    |

  20. Let "a" and "b" be be two distinct positive real numbers.Let 11^(" th ...

    Text Solution

    |