Home
Class 12
MATHS
Let a unit vector hat u = x hat i + y ha...

Let a unit vector `hat u = x hat i + y hat j + z hat k` make angles `(pi)2, (pi)/3` and `(2 pi)/3` with the vectors `frac{1}{sqrt 2} hat i + frac{1}{sqrt 2} hat k`, `frac{1}{sqrt 2} hat j + frac{1}{sqrt 2} hat k` and `frac{1}{sqrt 2} hat i + frac{1}{sqrt 2} hat j`respectively. If `vec v = frac{1}{sqrt 2} hat i + frac{1}{sqrt 2} hat j + frac{1}{sqrt 2} hat k`, then `|hat u - vec v|^2`

A

`(11)/2`

B

`5/2`

C

9

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \(\hat{u} = x \hat{i} + y \hat{j} + z \hat{k}\) that makes specific angles with given vectors. We will derive equations based on the angles and then find the value of \(|\hat{u} - \vec{v}|^2\). ### Step 1: Set up the vectors and angles We have: - \(\vec{p_1} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}\) - \(\vec{p_2} = \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}\) - \(\vec{p_3} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j}\) The angles with \(\hat{u}\) are: - \(\theta_1 = \frac{\pi}{2}\) with \(\vec{p_1}\) - \(\theta_2 = \frac{\pi}{3}\) with \(\vec{p_2}\) - \(\theta_3 = \frac{2\pi}{3}\) with \(\vec{p_3}\) ### Step 2: Use the dot product to derive equations 1. For \(\theta_1 = \frac{\pi}{2}\): \[ \hat{u} \cdot \vec{p_1} = 0 \implies x \cdot \frac{1}{\sqrt{2}} + z \cdot \frac{1}{\sqrt{2}} = 0 \implies x + z = 0 \quad \text{(Equation 1)} \] 2. For \(\theta_2 = \frac{\pi}{3}\): \[ \hat{u} \cdot \vec{p_2} = \frac{1}{2} \implies y \cdot \frac{1}{\sqrt{2}} + z \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} \implies y + z = \frac{1}{\sqrt{2}} \quad \text{(Equation 2)} \] 3. For \(\theta_3 = \frac{2\pi}{3}\): \[ \hat{u} \cdot \vec{p_3} = -\frac{1}{2} \implies x \cdot \frac{1}{\sqrt{2}} + y \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2} \implies x + y = -\frac{1}{\sqrt{2}} \quad \text{(Equation 3)} \] ### Step 3: Solve the system of equations From Equation 1: \[ z = -x \] Substituting \(z\) into Equation 2: \[ y - x = \frac{1}{\sqrt{2}} \implies y = x + \frac{1}{\sqrt{2}} \quad \text{(Equation 4)} \] Substituting \(y\) from Equation 4 into Equation 3: \[ x + (x + \frac{1}{\sqrt{2}}) = -\frac{1}{\sqrt{2}} \implies 2x + \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \implies 2x = -\frac{2}{\sqrt{2}} \implies x = -\frac{1}{\sqrt{2}} \] Using \(x\) to find \(y\) and \(z\): \[ y = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 0 \] \[ z = -(-\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}} \] Thus, we have: \[ \hat{u} = -\frac{1}{\sqrt{2}} \hat{i} + 0 \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \] ### Step 4: Calculate \(|\hat{u} - \vec{v}|^2\) Given \(\vec{v} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}\), we find: \[ \hat{u} - \vec{v} = \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) \hat{i} + \left(0 - \frac{1}{\sqrt{2}}\right) \hat{j} + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) \hat{k} \] \[ = -\sqrt{2} \hat{i} - \frac{1}{\sqrt{2}} \hat{j} + 0 \hat{k} \] Now, calculate the magnitude squared: \[ |\hat{u} - \vec{v}|^2 = \left(-\sqrt{2}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2 + 0^2 = 2 + \frac{1}{2} = \frac{5}{2} \] ### Final Answer \[ |\hat{u} - \vec{v}|^2 = \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

The vector (1/sqrt2 hat i + 1/sqrt2 hat j) is a unit vector?

What is the magnitude of the vector 2 hat i -3 hat j + sqrt3 hat k ?

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

A unit vector perpendicular to both hat i+ hat j\ a n d\ hat j+ hat k is hat i- hat j+ hat k b. hat i+ hat j+ hat k c. 1/(sqrt(3))( hat i+ hat j+ hat k) d. 1/(sqrt(3))( hat i- hat j+ hat k)

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot A vector in the plane of vec a and vec b whose projection of c is 1//sqrt(3) is a. 4 hat i- hat j+4 hat k b. 3 hat i+ hat j+3 hat k c. 2 hat i+ hat j+2 hat k d. 4 hat i+ hat j-4 hat k

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is (A) 1/2 (B) 1 (C) 2 (D) 4

If a unit vector hat a in the plane of vec b=2 hato+ hat j& vec c= hat i- hat j+ hat k is such that vec a vec d where vec d= hat j+2 hat l , then hat a is ( hat i+ hat j+ hat k)/(sqrt(3)) (b) ( hat i- hat j+ hat k)/(sqrt(3)) (2 hat i+ hat j)/(sqrt(5)) (d) (2 hat i- hat j)/(sqrt(5))

The expression (1/(sqrt(2))hat(i)+1/(sqrt(2))hat(j)) is a

What is the interior acute angle of the parallelogram whose sides are represented by the vectors (1)/(sqrt2) hat(i) +(2)/(sqrt2) hat(j) + hat(k) and (1)/(sqrt2) hat(i) - (1)/(sqrt2) hat(j) + hat(k) ?

The unit vector perpendicular to the plane passing through point P( hat i- hat j+2 hat k),\ Q(2 hat i- hat k)a n d\ R(2 hat j+ hat k)i s a) dot""2 hat i+ hat j+ hat k"\" b. sqrt(6)(2 hat i+ hat j+ hat k) c. 1/(sqrt(6))(2 hat i+ hat j+ hat k) d. 1/6(2 hat i+ hat j+ hat k)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If R is the smallest equivalence relation on the set {1, 2, 3, 4} such...

    Text Solution

    |

  2. An integer is chosen at random from the integers 1, 2, 3, …, 50. The p...

    Text Solution

    |

  3. Let a unit vector hat u = x hat i + y hat j + z hat k make angles (pi)...

    Text Solution

    |

  4. Let alpha, beta be the roots of the equationx^2 - sqrt 6 x + 3 = 0 suc...

    Text Solution

    |

  5. Let for any three distinct consecutive terms a, b, c of an A.P, the li...

    Text Solution

    |

  6. Let P(alpha, beta) be a point on the parabola y^2= 4x. If P also lies ...

    Text Solution

    |

  7. If int(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha + beta sqrt 2 + gamma ...

    Text Solution

    |

  8. Let the area of the region {(x, y): 0 le x le 3, 0 le y le min{x^2+ 2,...

    Text Solution

    |

  9. Let O be the origin, and M and N be the points on the lines frac{x-5}{...

    Text Solution

    |

  10. Let f(x) =sqrt ((lim(r-> x) {2r^2[f(r))^2 - f(x) f(r)]/(r^2-x^2)-r^3e^...

    Text Solution

    |

  11. Remainder when 64^(32^(32)is divided by 9 is equal to .

    Text Solution

    |

  12. Let the set C = {(x, y) | x^2- 2^y = 2023, x, y in }. Then sum((x,y) i...

    Text Solution

    |

  13. Let the slope of the line 45x + 5y + 3 = 0 be 27 r1 + (9r2)/ 2 for som...

    Text Solution

    |

  14. Let "P" be a point on the hyperbola H:(x^(2))/(9)-(y^(2))/(4)=1 ,in th...

    Text Solution

    |

  15. Let f(x)=(x+3)^(2)(x-2)^(3),x in[-4,4] .If "M" and "m" are the maximum...

    Text Solution

    |

  16. Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1)) is differentiable everywhere. T...

    Text Solution

    |

  17. Let "a" and "b" be be two distinct positive real numbers.Let 11^(" th ...

    Text Solution

    |

  18. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  19. Let vec a and vec b be two vectors such that |vec b|=1and |vec b times...

    Text Solution

    |

  20. Let R=([x,0,0],[0,y,0],[0,0,z]) be a non-zero 3times3 matrix,where x s...

    Text Solution

    |