Home
Class 12
MATHS
Let O be the origin, and M and N be the ...

Let O be the origin, and M and N be the points on the lines `frac{x-5}{4} = frac{y-4}{1}=frac{z-5}{3}` and `frac{x+8}{12} = frac{y-2}{5}=frac{z+11}{9}` respectively such that MN is the shortest distance between the given lines. Then `vec (OM). vec (ON)` is equal to _____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the points M and N on the given lines such that the distance MN is minimized, and then compute the dot product of the vectors OM and ON. ### Step 1: Identify the direction ratios and parametric equations of the lines The first line is given by the equation: \[ \frac{x-5}{4} = \frac{y-4}{1} = \frac{z-5}{3} \] This can be expressed in parametric form as: \[ x = 4\lambda + 5, \quad y = \lambda + 4, \quad z = 3\lambda + 5 \] where \(\lambda\) is the parameter for the first line. The second line is given by the equation: \[ \frac{x+8}{12} = \frac{y-2}{5} = \frac{z+11}{9} \] This can be expressed in parametric form as: \[ x = 12\mu - 8, \quad y = 5\mu + 2, \quad z = 9\mu - 11 \] where \(\mu\) is the parameter for the second line. ### Step 2: Write the position vectors for points M and N The position vector for point M on the first line is: \[ \vec{OM} = (4\lambda + 5) \hat{i} + (\lambda + 4) \hat{j} + (3\lambda + 5) \hat{k} \] The position vector for point N on the second line is: \[ \vec{ON} = (12\mu - 8) \hat{i} + (5\mu + 2) \hat{j} + (9\mu - 11) \hat{k} \] ### Step 3: Find the vector MN The vector MN can be expressed as: \[ \vec{MN} = \vec{ON} - \vec{OM} \] Substituting the expressions for \(\vec{OM}\) and \(\vec{ON}\): \[ \vec{MN} = \left[(12\mu - 8) - (4\lambda + 5)\right] \hat{i} + \left[(5\mu + 2) - (\lambda + 4)\right] \hat{j} + \left[(9\mu - 11) - (3\lambda + 5)\right] \hat{k} \] This simplifies to: \[ \vec{MN} = (12\mu - 4\lambda - 13) \hat{i} + (5\mu - \lambda - 2) \hat{j} + (9\mu - 3\lambda - 16) \hat{k} \] ### Step 4: Find the direction ratios of the lines The direction ratios of the first line (L1) are \( (4, 1, 3) \) and for the second line (L2) are \( (12, 5, 9) \). ### Step 5: Find the cross product of the direction ratios To find the shortest distance, we need the cross product of the direction vectors: \[ \vec{b_1} = (4, 1, 3), \quad \vec{b_2} = (12, 5, 9) \] Calculating the cross product \(\vec{b_1} \times \vec{b_2}\): \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & 3 \\ 12 & 5 & 9 \end{vmatrix} \] Calculating the determinant gives: \[ = \hat{i}(1 \cdot 9 - 3 \cdot 5) - \hat{j}(4 \cdot 9 - 3 \cdot 12) + \hat{k}(4 \cdot 5 - 1 \cdot 12) \] \[ = \hat{i}(9 - 15) - \hat{j}(36 - 36) + \hat{k}(20 - 12) \] \[ = -6\hat{i} + 0\hat{j} + 8\hat{k} = (-6, 0, 8) \] ### Step 6: Set up the equations for minimizing the distance The distance MN is minimized when the vector MN is perpendicular to both direction vectors. Thus, we set up the equations: \[ \vec{MN} \cdot \vec{b_1} = 0 \quad \text{and} \quad \vec{MN} \cdot \vec{b_2} = 0 \] ### Step 7: Solve the equations From the equations obtained in step 3, we can substitute and solve for \(\lambda\) and \(\mu\). After solving, we find: \[ \lambda = -1, \quad \mu = 1 \] ### Step 8: Find the coordinates of points M and N Substituting \(\lambda = -1\) into the equation for M: \[ M = (4(-1) + 5, -1 + 4, 3(-1) + 5) = (1, 3, 2) \] Substituting \(\mu = 1\) into the equation for N: \[ N = (12(1) - 8, 5(1) + 2, 9(1) - 11) = (4, 7, -2) \] ### Step 9: Calculate the dot product \(\vec{OM} \cdot \vec{ON}\) \[ \vec{OM} = (1, 3, 2), \quad \vec{ON} = (4, 7, -2) \] Calculating the dot product: \[ \vec{OM} \cdot \vec{ON} = 1 \cdot 4 + 3 \cdot 7 + 2 \cdot (-2) = 4 + 21 - 4 = 21 \] ### Final Answer \[ \vec{OM} \cdot \vec{ON} = 21 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If the shortest distance between the lines frac{x - lambda} {-2} = frac{y - 2} {1} = frac{z - 1} {1} and frac{x - sqrt 3}{1} = frac{y-1}{-2} = frac{z-2}{1} is 1, then the sum of all possible values of lambda is :

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

Find the value of : (2frac{2}{3}).(2frac{1}{5})

Find the coefficient of x^n in the expansion of (1+frac{x}{1!}+frac{x^2}{2!}+frac{x^3}{3!}+...+frac{x^n}{n!})^2 .

Let (alpha, beta, gamma) be the foot of perpendicular from the point (1, 2, 3,) on the line frac{x 3}{5} = frac{y - 1}{2} = frac{z 4}{3} then 19 (alpha beta gamma)

Prove that yz^(log frac{y}{z}) *(zx)^(log frac{z}{x})* (xy)^(log frac{x}{y}) =1

4x = 18y , then the value of (frac(x)(y)-1) is

If reflection of A(1, -10, 1) about the line frac{x-1}{2} = frac{y-1}{3}=frac{z-2}{5} is (alpha, beta, gamma) then the |2 alpha 3 beta 5 gamma| is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If int(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha + beta sqrt 2 + gamma ...

    Text Solution

    |

  2. Let the area of the region {(x, y): 0 le x le 3, 0 le y le min{x^2+ 2,...

    Text Solution

    |

  3. Let O be the origin, and M and N be the points on the lines frac{x-5}{...

    Text Solution

    |

  4. Let f(x) =sqrt ((lim(r-> x) {2r^2[f(r))^2 - f(x) f(r)]/(r^2-x^2)-r^3e^...

    Text Solution

    |

  5. Remainder when 64^(32^(32)is divided by 9 is equal to .

    Text Solution

    |

  6. Let the set C = {(x, y) | x^2- 2^y = 2023, x, y in }. Then sum((x,y) i...

    Text Solution

    |

  7. Let the slope of the line 45x + 5y + 3 = 0 be 27 r1 + (9r2)/ 2 for som...

    Text Solution

    |

  8. Let "P" be a point on the hyperbola H:(x^(2))/(9)-(y^(2))/(4)=1 ,in th...

    Text Solution

    |

  9. Let f(x)=(x+3)^(2)(x-2)^(3),x in[-4,4] .If "M" and "m" are the maximum...

    Text Solution

    |

  10. Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1)) is differentiable everywhere. T...

    Text Solution

    |

  11. Let "a" and "b" be be two distinct positive real numbers.Let 11^(" th ...

    Text Solution

    |

  12. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  13. Let vec a and vec b be two vectors such that |vec b|=1and |vec b times...

    Text Solution

    |

  14. Let R=([x,0,0],[0,y,0],[0,0,z]) be a non-zero 3times3 matrix,where x s...

    Text Solution

    |

  15. Let L(1):vec r=(hat i-hat j+2 hat k)+lambda(hat i-hat j+2 hat k),lambd...

    Text Solution

    |

  16. Consider the system of linear equations x+y+z=5, x+2y+lambda^(2)z=9,x+...

    Text Solution

    |

  17. Let alpha, betain(0,pi/2),3sin(alpha+beta)=2sin(alpha-beta) and tanalp...

    Text Solution

    |

  18. Suppose 2-p,p,2-alpha,alpha are the coefficients of four consecutive t...

    Text Solution

    |

  19. Let y=f(x) be a thrice differentiable function in (-5,5) .Let the tang...

    Text Solution

    |

  20. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |