Home
Class 12
MATHS
Let vec a and vec b be two vectors such ...

Let `vec a` and `vec b` be two vectors such that `|vec b|=1`and `|vec b timesvec a|=2` .Then `|(vec b timesvec a)-vec b|^(2)` is equal to

A

3

B

4

C

1

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{b} \times \vec{a} - \vec{b}|^2\) given that \(|\vec{b}| = 1\) and \(|\vec{b} \times \vec{a}| = 2\). ### Step-by-step solution: 1. **Understanding the given conditions**: - We know that \(|\vec{b}| = 1\), which means that \(\vec{b}\) is a unit vector. - We also know that \(|\vec{b} \times \vec{a}| = 2\). 2. **Using the properties of cross product**: - The magnitude of the cross product \(|\vec{b} \times \vec{a}|\) can be expressed as: \[ |\vec{b} \times \vec{a}| = |\vec{b}| |\vec{a}| \sin \theta \] where \(\theta\) is the angle between vectors \(\vec{b}\) and \(\vec{a}\). - Given that \(|\vec{b}| = 1\), we have: \[ |\vec{b} \times \vec{a}| = |\vec{a}| \sin \theta = 2 \] 3. **Finding \(|\vec{b} \times \vec{a} - \vec{b}|^2\)**: - We can express \(|\vec{b} \times \vec{a} - \vec{b}|^2\) using the formula: \[ |\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v} \] where \(\vec{u} = \vec{b} \times \vec{a}\) and \(\vec{v} = \vec{b}\). 4. **Calculating \(|\vec{b} \times \vec{a}|^2\)**: - Since \(|\vec{b} \times \vec{a}| = 2\), we have: \[ |\vec{b} \times \vec{a}|^2 = 2^2 = 4 \] 5. **Calculating \(|\vec{b}|^2\)**: - Since \(|\vec{b}| = 1\), we have: \[ |\vec{b}|^2 = 1^2 = 1 \] 6. **Calculating the dot product \(\vec{u} \cdot \vec{v}\)**: - The dot product \(\vec{b} \times \vec{a} \cdot \vec{b}\) is equal to 0 because the cross product is orthogonal to both vectors involved: \[ \vec{b} \times \vec{a} \cdot \vec{b} = 0 \] 7. **Putting it all together**: - Now substituting these values into the equation: \[ |\vec{b} \times \vec{a} - \vec{b}|^2 = |\vec{b} \times \vec{a}|^2 + |\vec{b}|^2 - 2(\vec{b} \times \vec{a} \cdot \vec{b}) \] \[ = 4 + 1 - 2 \cdot 0 = 4 + 1 = 5 \] ### Final Answer: \[ |\vec{b} \times \vec{a} - \vec{b}|^2 = 5 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Solve (vec a timesvec a)*vec b

Let vec a and vec b be two unit vectors such that |vec a+vec b|=sqrt(3) if vec c=vec a+2vec b+3(vec aXvec b) then 2|vec c| is equal to

If vec a and vec b are unit vectors such that |vec a xxvec b|=vec a.vec b then |vec a-vec b|^(2) is equal to

If vec a and vec b are two vectors such that |bar(a)|=1,|vec b|=4,vec a*vec b=2 .If vec c=(2vec a timesvec b)-3vec b then find the angle between bar(b) and vec c is theta .Find (6 theta)/(pi)

If vec a and vec b are two vectors,such that |vec a|=2,|vec b|=1 and vec a*vec b=1, then find (3vec a-5vec b)*(2vec a+7vec b)

If vec a and vec b are two vectors such that |vec a+vec b|=|vec a|, then prove that vector 2vec a+vec b is perpendicular to vector vec b

If vec a,vec b, are two vectors such that |vec a+vec b|=|vec a|, then prove that 2vec a+vec b is perpendicular to vec b .

Let vec a and vec b be unequal unit vectors such that vec a*((vec a-vec b)times(3vec a-4vec b))=vec a+vec b then the angle between vec a&vec b is

Let vec a and vec b be unequal unit vectors such that vec a.((vec a-vec b)times(3vec a-4vec b))=vec a+vec b then the angle between vec a&vec b is

If |vec a| =5, |vec b|=13 , |vec a timesvec b|=25 then find the value of vec a*vec b

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let "a" and "b" be be two distinct positive real numbers.Let 11^(" th ...

    Text Solution

    |

  2. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  3. Let vec a and vec b be two vectors such that |vec b|=1and |vec b times...

    Text Solution

    |

  4. Let R=([x,0,0],[0,y,0],[0,0,z]) be a non-zero 3times3 matrix,where x s...

    Text Solution

    |

  5. Let L(1):vec r=(hat i-hat j+2 hat k)+lambda(hat i-hat j+2 hat k),lambd...

    Text Solution

    |

  6. Consider the system of linear equations x+y+z=5, x+2y+lambda^(2)z=9,x+...

    Text Solution

    |

  7. Let alpha, betain(0,pi/2),3sin(alpha+beta)=2sin(alpha-beta) and tanalp...

    Text Solution

    |

  8. Suppose 2-p,p,2-alpha,alpha are the coefficients of four consecutive t...

    Text Solution

    |

  9. Let y=f(x) be a thrice differentiable function in (-5,5) .Let the tang...

    Text Solution

    |

  10. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  11. Let f:R-{0}rarr R be a function satisfying f((x)/(y))=(f(x))/(f(y)) fo...

    Text Solution

    |

  12. Let A(alpha,0) and B(0,beta) be the points on the line 5x+7y=50 .Let t...

    Text Solution

    |

  13. Let vec a= hat i+alpha hat j+beta hat k,alpha,beta in R .Let a vector ...

    Text Solution

    |

  14. Bag A contains "3" white,"7" red balls and Bag B contains "3" white,"2...

    Text Solution

    |

  15. If the domain of the function f(x)=log(e)((2x+3)/(4x^(2)+x-3))+cos^(-1...

    Text Solution

    |

  16. If x^(2)-y^(2)+2hxy+2gx+2fy+c=0 is the locus of a point,which moves su...

    Text Solution

    |

  17. Let f:R rarr R be a function defined by f(x)=(x)/((1+x^(4))^(1/4)) ,an...

    Text Solution

    |

  18. The variance sigma^(2) of the data

    Text Solution

    |

  19. Let a line passing through the point (-1,2,3) intersect the lines L(1)...

    Text Solution

    |

  20. Consider two circles C(1):x^(2)+y^(2)=25 and C(2):(x-alpha)^(2)+y^(2)=...

    Text Solution

    |