Home
Class 12
MATHS
Let L(1):vec r=(hat i-hat j+2 hat k)+lam...

Let `L_(1):vec r=(hat i-hat j+2 hat k)+lambda(hat i-hat j+2 hat k),lambda in R`
`L_(2):vec r=(hat j-hat k)+mu(3 hat i+hat j+p hat k),mu in R` ,and `L_(3):vec r=delta(l hat i+m hat j+n hat k),delta in R` be three lines such that `L_(1)` is perpendicular to `L_(2)` and `L_(3)` is perpendicular to both `L_(1)` and `L_(2)` .Then,the point which lies on `L_(3)` is

A

`(-,1-7,4)`

B

`(-1,7,4)`

C

`(1,-7,4)`

D

`(1,7,-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the point that lies on the line \( L_3 \) given the conditions about the lines \( L_1 \), \( L_2 \), and \( L_3 \). ### Step-by-step Solution: 1. **Identify Direction Vectors**: - For line \( L_1 \): \[ \vec{r} = \hat{i} - \hat{j} + 2\hat{k} + \lambda(\hat{i} - \hat{j} + 2\hat{k}) \] The direction vector \( \vec{d_1} \) is \( \hat{i} - \hat{j} + 2\hat{k} \). - For line \( L_2 \): \[ \vec{r} = \hat{j} - \hat{k} + \mu(3\hat{i} + \hat{j} + p\hat{k}) \] The direction vector \( \vec{d_2} \) is \( 3\hat{i} + \hat{j} + p\hat{k} \). 2. **Use the Perpendicular Condition**: - Since \( L_1 \) is perpendicular to \( L_2 \), we have: \[ \vec{d_1} \cdot \vec{d_2} = 0 \] This gives: \[ (\hat{i} - \hat{j} + 2\hat{k}) \cdot (3\hat{i} + \hat{j} + p\hat{k}) = 0 \] Expanding this, we get: \[ 3 - 1 + 2p = 0 \implies 2 + 2p = 0 \implies p = -1 \] 3. **Substitute \( p \) back into \( L_2 \)**: - Now, the direction vector for \( L_2 \) becomes: \[ \vec{d_2} = 3\hat{i} + \hat{j} - \hat{k} \] 4. **Find the Cross Product**: - To find the direction vector \( \vec{d_3} \) of line \( L_3 \), we compute the cross product \( \vec{d_1} \times \vec{d_2} \): \[ \vec{d_1} = (1, -1, 2), \quad \vec{d_2} = (3, 1, -1) \] The cross product is calculated as: \[ \vec{d_3} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & -1 \end{vmatrix} \] This results in: \[ \hat{i}((-1)(-1) - (2)(1)) - \hat{j}((1)(-1) - (2)(3)) + \hat{k}((1)(1) - (-1)(3)) \] Simplifying this gives: \[ \hat{i}(1 - 2) - \hat{j}(-1 - 6) + \hat{k}(1 + 3) = -\hat{i} + 7\hat{j} + 4\hat{k} \] 5. **Equation of Line \( L_3 \)**: - The line \( L_3 \) can be expressed as: \[ \vec{r} = \delta(-\hat{i} + 7\hat{j} + 4\hat{k}) \] where \( \delta \in \mathbb{R} \). 6. **Finding a Point on \( L_3 \)**: - For \( \delta = 1 \): \[ \vec{r} = -\hat{i} + 7\hat{j} + 4\hat{k} \] - Thus, the point that lies on \( L_3 \) is: \[ (-1, 7, 4) \] ### Final Answer: The point which lies on \( L_3 \) is \( (-1, 7, 4) \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If L_(1):(vec r)=(-hat i-2hat j-hat k)+lambda(3hat i+hat j+2hat k) and L_(2):vec r=(2hat i-2hat j+3hat k)+mu(hat i+2hat j+3hat k) are two lines, then a vector perpendicular to both the lines of magnitude 5sqrt(3) is

Consider a line vec r=hat i+t(hat i+hat j+hat k) and a plane (vec r-(hat i+hat j))*(hat i-hat j-hat k)=1

The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

Find the angle between the line vec r=(2hat i-hat j+3hat k)+lambda(3hat i-hat j+2hat k) and the plane vec r*(hat i+hat j+hat k)=3

Consider the equation of the straight lines given by L_(1):vec r=hat i+hat j+lambda(2hat i-hat j+hat k) and L_(2):vec r=2hat i+hat j-hat k+mu(4hat i-2hat j-2hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let vec a and vec b be two vectors such that |vec b|=1and |vec b times...

    Text Solution

    |

  2. Let R=([x,0,0],[0,y,0],[0,0,z]) be a non-zero 3times3 matrix,where x s...

    Text Solution

    |

  3. Let L(1):vec r=(hat i-hat j+2 hat k)+lambda(hat i-hat j+2 hat k),lambd...

    Text Solution

    |

  4. Consider the system of linear equations x+y+z=5, x+2y+lambda^(2)z=9,x+...

    Text Solution

    |

  5. Let alpha, betain(0,pi/2),3sin(alpha+beta)=2sin(alpha-beta) and tanalp...

    Text Solution

    |

  6. Suppose 2-p,p,2-alpha,alpha are the coefficients of four consecutive t...

    Text Solution

    |

  7. Let y=f(x) be a thrice differentiable function in (-5,5) .Let the tang...

    Text Solution

    |

  8. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  9. Let f:R-{0}rarr R be a function satisfying f((x)/(y))=(f(x))/(f(y)) fo...

    Text Solution

    |

  10. Let A(alpha,0) and B(0,beta) be the points on the line 5x+7y=50 .Let t...

    Text Solution

    |

  11. Let vec a= hat i+alpha hat j+beta hat k,alpha,beta in R .Let a vector ...

    Text Solution

    |

  12. Bag A contains "3" white,"7" red balls and Bag B contains "3" white,"2...

    Text Solution

    |

  13. If the domain of the function f(x)=log(e)((2x+3)/(4x^(2)+x-3))+cos^(-1...

    Text Solution

    |

  14. If x^(2)-y^(2)+2hxy+2gx+2fy+c=0 is the locus of a point,which moves su...

    Text Solution

    |

  15. Let f:R rarr R be a function defined by f(x)=(x)/((1+x^(4))^(1/4)) ,an...

    Text Solution

    |

  16. The variance sigma^(2) of the data

    Text Solution

    |

  17. Let a line passing through the point (-1,2,3) intersect the lines L(1)...

    Text Solution

    |

  18. Consider two circles C(1):x^(2)+y^(2)=25 and C(2):(x-alpha)^(2)+y^(2)=...

    Text Solution

    |

  19. Let S(n) be the sum to "n" -terms of an arithmetic progression 3,7,11,...

    Text Solution

    |

  20. The number of real solutions of the equation x(x^(2)+3|x|+5|x-1|+6|x-2...

    Text Solution

    |