Home
Class 12
MATHS
If int(0)^((pi)/(3))cos^(4)xdx=a pi+b sq...

If `int_(0)^((pi)/(3))cos^(4)xdx=a pi+b sqrt(3)` ,where "a" and "b" are rational numbers, then `9a+8b` is equal to:

A

3

B

1

C

`3/2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx \) and express it in the form \( a\pi + b\sqrt{3} \), we will follow these steps: ### Step 1: Rewrite \( \cos^4 x \) We can use the identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, \[ \cos^4 x = \left(\cos^2 x\right)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{(1 + \cos 2x)^2}{4} \] ### Step 2: Expand \( \cos^4 x \) Expanding \( \cos^4 x \): \[ \cos^4 x = \frac{1 + 2\cos 2x + \cos^2 2x}{4} \] Now, we can express \( \cos^2 2x \) using the same identity: \[ \cos^2 2x = \frac{1 + \cos 4x}{2} \] Substituting this back, we have: \[ \cos^4 x = \frac{1 + 2\cos 2x + \frac{1 + \cos 4x}{2}}{4} = \frac{1 + 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x}{4} \] Combining terms gives: \[ \cos^4 x = \frac{3/2 + 2\cos 2x + \frac{1}{2}\cos 4x}{4} = \frac{3 + 4\cos 2x + \cos 4x}{8} \] ### Step 3: Set up the integral Now we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = \int_{0}^{\frac{\pi}{3}} \frac{3 + 4\cos 2x + \cos 4x}{8} \, dx = \frac{1}{8} \int_{0}^{\frac{\pi}{3}} (3 + 4\cos 2x + \cos 4x) \, dx \] ### Step 4: Evaluate the integral Now we will evaluate each part of the integral: 1. \( \int_{0}^{\frac{\pi}{3}} 3 \, dx = 3 \cdot \frac{\pi}{3} = \pi \) 2. \( \int_{0}^{\frac{\pi}{3}} 4\cos 2x \, dx = 4 \cdot \frac{\sin 2x}{2} \bigg|_{0}^{\frac{\pi}{3}} = 2(\sin \frac{2\pi}{3} - \sin 0) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \) 3. \( \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx = \frac{\sin 4x}{4} \bigg|_{0}^{\frac{\pi}{3}} = \frac{\sin \frac{4\pi}{3} - \sin 0}{4} = \frac{-\frac{\sqrt{3}}{2}}{4} = -\frac{\sqrt{3}}{8} \) Putting it all together: \[ \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = \frac{1}{8} \left( \pi + \sqrt{3} - \frac{\sqrt{3}}{8} \right) = \frac{1}{8} \left( \pi + \frac{8\sqrt{3}}{8} - \frac{\sqrt{3}}{8} \right) = \frac{1}{8} \left( \pi + \frac{7\sqrt{3}}{8} \right) \] ### Step 5: Express in the required form Thus, we have: \[ \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = \frac{1}{8} \pi + \frac{7}{64} \sqrt{3} \] From this, we can identify \( a = \frac{1}{8} \) and \( b = \frac{7}{64} \). ### Step 6: Calculate \( 9a + 8b \) Now we calculate: \[ 9a + 8b = 9 \cdot \frac{1}{8} + 8 \cdot \frac{7}{64} = \frac{9}{8} + \frac{56}{64} = \frac{9}{8} + \frac{7}{8} = \frac{16}{8} = 2 \] ### Final Answer Thus, the value of \( 9a + 8b \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))cos^(4)xdx

int_(0)^((pi)/(2))cos^(8)xdx

int_(0)^((pi)/(4))cos^(2)xdx

int_(0)^((pi)/(4))x cos xdx

int_(0)^((pi)/(4))x cos xdx

int_(0)^((pi)/(6))cos3xdx

int_(-pi)^(pi)x^(3)cos^(3)xdx=?

int_(0)^( pi/2)cos^(3)xdx

int_(0)^(2 pi)cos^(4)xdx

int_(0)^( pi)sin^(3)x cos^(3)xdx

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let vec a=3 hat i+2 hat j+hat k,vec b=2 hat i-hat j+3 hat k and vec c ...

    Text Solution

    |

  2. Let alpha and beta are roots of the equation px^2+qx-r=0 where pne0. I...

    Text Solution

    |

  3. If int(0)^((pi)/(3))cos^(4)xdx=a pi+b sqrt(3) ,where "a" and "b" are r...

    Text Solution

    |

  4. If "z" is a complex number such that |z| ge 1 ,then the minimum value ...

    Text Solution

    |

  5. Let the locus of the mid point of the chords of the circle x^2+(y-1)^2...

    Text Solution

    |

  6. Let "P" and "Q" be the points on the line (x+3)/(8)=(y-4)/(2)=(z+1)/(2...

    Text Solution

    |

  7. If the mirror image of the point "P(3,4,9)" in the line (x-1)/(3)=(y+1...

    Text Solution

    |

  8. Consider the relations R(1) and R(2) defined as aR(1)b hArr a^(2)+b^(2...

    Text Solution

    |

  9. If m is the coefficient of 7th term and n is the coefficient of 13th t...

    Text Solution

    |

  10. If the domain of the function f(x)=(sqrt(x^(2)-25))/((4-x^(2)))+log(10...

    Text Solution

    |

  11. The probability that Ajay will go to office is 1/5 and probability tha...

    Text Solution

    |

  12. Consider "10" observations x(1),x(2),...,x(10) such that sum(i=1)^(10)...

    Text Solution

    |

  13. Let f(x)=|2x^(2)+5|x|-3|,x in R .If "m" and "n" denote the number of p...

    Text Solution

    |

  14. Let f(x)={[x-1,x" is even,[2x,"x is odd"]:} in N .If for some a in N,f...

    Text Solution

    |

  15. The number of solutions of the equation 4sin^(2)x-4cos^(3)x+9-4cos x=0...

    Text Solution

    |

  16. The value of int0^1(2x^3-3x^2-x+1)^(1/3)dx is equal to

    Text Solution

    |

  17. Let the system of equations x+2y+3z=5,2x+3y+z=9,4x+3y+lambda z=mu have...

    Text Solution

    |

  18. Let alpha be a non-zero real number.Suppose f:R rarr R is a differenti...

    Text Solution

    |

  19. Consider a /ABC where A(1,3,2),B(-2,8,0) and C(3,6,7) .If the angle bi...

    Text Solution

    |

  20. Let S(n) denote the sum of the first "n" terms of an arithmetic progre...

    Text Solution

    |