Home
Class 12
MATHS
The value of the integral int0^(pi/4) fr...

The value of the integral `int_0^(pi/4) frac{xdx}{sin^4 2x+cos^4 2x}` equals:

A

`frac{sqrt 2 pi^2}{8}`

B

`frac{sqrt 2 pi^2}{16}`

C

`frac{sqrt 2 pi^2}{32}`

D

`frac{sqrt 2 pi^2}{64}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)}, \] we can use the property of definite integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] Here, we will set \( a = \frac{\pi}{4} \). Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \frac{\left(\frac{\pi}{4} - x\right) \, dx}{\sin^4(2(\frac{\pi}{4} - x)) + \cos^4(2(\frac{\pi}{4} - x))}. \] Now, simplifying the argument of the sine and cosine functions: \[ \sin(2(\frac{\pi}{4} - x)) = \sin\left(\frac{\pi}{2} - 2x\right) = \cos(2x), \] \[ \cos(2(\frac{\pi}{4} - x)) = \cos\left(\frac{\pi}{2} - 2x\right) = \sin(2x). \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{4}} \frac{\left(\frac{\pi}{4} - x\right) \, dx}{\cos^4(2x) + \sin^4(2x)}. \] Now, we can express \( I \) as: \[ I = \int_0^{\frac{\pi}{4}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)} + \int_0^{\frac{\pi}{4}} \frac{\left(\frac{\pi}{4} - x\right) \, dx}{\sin^4(2x) + \cos^4(2x)}. \] Combining both integrals gives: \[ 2I = \int_0^{\frac{\pi}{4}} \frac{\frac{\pi}{4} \, dx}{\sin^4(2x) + \cos^4(2x)}. \] Thus, we have: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{4}} \frac{\frac{\pi}{4} \, dx}{\sin^4(2x) + \cos^4(2x)} = \frac{\pi}{8} \int_0^{\frac{\pi}{4}} \frac{dx}{\sin^4(2x) + \cos^4(2x)}. \] Next, we need to simplify the denominator: \[ \sin^4(2x) + \cos^4(2x) = (\sin^2(2x) + \cos^2(2x))^2 - 2\sin^2(2x)\cos^2(2x) = 1 - 2\sin^2(2x)\cos^2(2x). \] Using the identity \( \sin^2(2x) = \frac{1 - \cos(4x)}{2} \) and \( \cos^2(2x) = \frac{1 + \cos(4x)}{2} \), we can express: \[ \sin^2(2x)\cos^2(2x) = \frac{1}{4}(1 - \cos(4x))(1 + \cos(4x)) = \frac{1}{4}(1 - \cos^2(4x)) = \frac{1}{4}\sin^2(4x). \] Thus, we have: \[ \sin^4(2x) + \cos^4(2x) = 1 - \frac{1}{2}\sin^2(4x). \] Now, substituting this back into the integral, we get: \[ I = \frac{\pi}{8} \int_0^{\frac{\pi}{4}} \frac{dx}{1 - \frac{1}{2}\sin^2(4x)}. \] This integral can be evaluated using a standard integral formula, leading to the final result. ### Final Result: After evaluating, we find: \[ I = \frac{\pi^2}{16\sqrt{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

Evaluate the following integral: int_(0)^( pi)x sin x cos^(4)xdx

E valuate the integration int_(0)^((pi)/(2))sin^(3)x cos^(2)xdx

Q.the value of the integral int_(0)^((pi)/(4))(cos^(2)x)/(sin x+cos x)+int_((pi)/(4))^(0)(sin^(2))/(sin x+cos x)

The value of the definite integral int_(0)^((pi)/(2))sin x sin2x sin3xdx is equal to :

int_0^(pi/2) sin^4x/(sin^4x+cos^4x) dx=

he value of the integral int e^(sin^(2x))(cos x+cos^(3)x)sin xdx is

int_(0)^(pi) sin^(4) x cos^(2)xdx =

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The sum of squares of all possible values of "k" ,for which area of th...

    Text Solution

    |

  2. A bag contains 8 balls,whose colours are either white or black. 4 ball...

    Text Solution

    |

  3. The value of the integral int0^(pi/4) frac{xdx}{sin^4 2x+cos^4 2x} equ...

    Text Solution

    |

  4. If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then de...

    Text Solution

    |

  5. If tan A = frac{1}{sqrt (x(x^2 + x + 1)}, tan B = frac{sqrt x}{sqrt (x...

    Text Solution

    |

  6. If n is the number of ways five different employees can sit into four ...

    Text Solution

    |

  7. Let S={ Z in C : | z - 1|=1 and (sqrt 2 - 1) (z + overline z) - i(z - ...

    Text Solution

    |

  8. Let the median and the mean deviation about the median of 7 observatio...

    Text Solution

    |

  9. Let vec a = - 5 hat i + hat j - 3 hat k, vec b = hat i + 2 hat j - 4 h...

    Text Solution

    |

  10. Let S equiv {x in R : (sqrt 3 + sqrt 2)^x + (sqrt 3 - sqrt 2)^x = 10}....

    Text Solution

    |

  11. The area bounded by xy+4y=16 and x+y=6 is

    Text Solution

    |

  12. Let f :R to R and g : R rightarrow R be defined as f(x)={(loge x, x gt...

    Text Solution

    |

  13. If the system of equations 2x + 3y – z = 5 x + alpha y + 3z = –4...

    Text Solution

    |

  14. Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2...

    Text Solution

    |

  15. Let y = y(x) be the solution of the differential equation frac{dy}{dx}...

    Text Solution

    |

  16. Let f : R rightarrow R be defined as f(x) = {(frac{a-b cos 2x}{x^2} ,x...

    Text Solution

    |

  17. Let frac{x^2}{a^2}+ frac{y^2}{b^2}=1, a gt b be an ellipse, whose ecc...

    Text Solution

    |

  18. Let 3, a, b, c be in A.P. and 3, a – 1, b +1, c + 9 be in G.P. Then, t...

    Text Solution

    |

  19. Let C : x^2 + y^2 = 4 and C’ : x^2 + y^2- 4 lambda x + 9 = 0 be two ci...

    Text Solution

    |

  20. Given 5f(x)+4f(1/x)=x^2-2 and y=9f(x)x^2. An interval on which y is st...

    Text Solution

    |