Home
Class 12
MATHS
If tan A = frac{1}{sqrt (x(x^2 + x + 1)}...

If `tan A = frac{1}{sqrt (x(x^2 + x + 1)}`, `tan B = frac{sqrt x}{sqrt (x^2 + x + 1)}`, and `tan C = (x^(-3) + x^(-2) + x^(-1))^(1/2)`, `0 < A, B, C < pi/2`, then A + B is equal to :

A

C

B

`pi-C`

C

`2pi-C`

D

`pi/2-C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A + B \) given the values of \( \tan A \), \( \tan B \), and \( \tan C \). ### Step 1: Write the expressions for \( A \) and \( B \) Given: \[ \tan A = \frac{1}{\sqrt{x(x^2 + x + 1)}} \] \[ \tan B = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} \] ### Step 2: Use the formula for \( A + B \) We know from trigonometric identities that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] ### Step 3: Substitute \( \tan A \) and \( \tan B \) Substituting the values of \( \tan A \) and \( \tan B \): \[ \tan(A + B) = \frac{\frac{1}{\sqrt{x(x^2 + x + 1)}} + \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}}{1 - \left(\frac{1}{\sqrt{x(x^2 + x + 1)}}\right)\left(\frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}\right)} \] ### Step 4: Simplify the numerator The numerator becomes: \[ \frac{1 + x}{\sqrt{x(x^2 + x + 1)}} \] ### Step 5: Simplify the denominator The denominator becomes: \[ 1 - \frac{1 \cdot \sqrt{x}}{\sqrt{x(x^2 + x + 1)}} = 1 - \frac{1}{\sqrt{x^2 + x + 1}} \] ### Step 6: Combine the fractions Now we can write: \[ \tan(A + B) = \frac{\frac{1 + x}{\sqrt{x(x^2 + x + 1)}}}{1 - \frac{1}{\sqrt{x^2 + x + 1}}} \] ### Step 7: Simplify further To simplify the expression, we can multiply the numerator and the denominator by \( \sqrt{x^2 + x + 1} \): \[ \tan(A + B) = \frac{(1 + x)}{\sqrt{x(x^2 + x + 1)} \left( \sqrt{x^2 + x + 1} - 1 \right)} \] ### Step 8: Relate to \( \tan C \) Given: \[ \tan C = \sqrt{x^{-3} + x^{-2} + x^{-1}} = \sqrt{\frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x}} = \sqrt{\frac{1 + x + x^2}{x^3}} \] ### Step 9: Compare \( \tan(A + B) \) and \( \tan C \) We can see that: \[ \tan(A + B) = \tan C \] ### Conclusion Thus, we conclude that: \[ A + B = C \] Therefore, the final answer is: \[ \boxed{C} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sqrt (x ^(2) + x +1))and tan y = (x ^(-3) + x ^(-2)+ x ^(-1)) ^(1//2), then for x gt 0

if tan alpha=(1)/(sqrt(x(x^(2)+x+1))),tan beta=(sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma=sqrt(x^(-3)+x^(-2)+x^(-1)) then alpha+beta=

sqrt(2)sec x+tan x=1

tan^(-1){sqrt((a-x)/(2+x))},-a

tan^(-1)[x/sqrt(a^(2)-x^(2))]=

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Find the lim_(x to 0) frac{sqrt(x+2) -sqrt2}{root(3)(1-x) - sqrt(1+x)} .

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The value of the integral int0^(pi/4) frac{xdx}{sin^4 2x+cos^4 2x} equ...

    Text Solution

    |

  2. If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then de...

    Text Solution

    |

  3. If tan A = frac{1}{sqrt (x(x^2 + x + 1)}, tan B = frac{sqrt x}{sqrt (x...

    Text Solution

    |

  4. If n is the number of ways five different employees can sit into four ...

    Text Solution

    |

  5. Let S={ Z in C : | z - 1|=1 and (sqrt 2 - 1) (z + overline z) - i(z - ...

    Text Solution

    |

  6. Let the median and the mean deviation about the median of 7 observatio...

    Text Solution

    |

  7. Let vec a = - 5 hat i + hat j - 3 hat k, vec b = hat i + 2 hat j - 4 h...

    Text Solution

    |

  8. Let S equiv {x in R : (sqrt 3 + sqrt 2)^x + (sqrt 3 - sqrt 2)^x = 10}....

    Text Solution

    |

  9. The area bounded by xy+4y=16 and x+y=6 is

    Text Solution

    |

  10. Let f :R to R and g : R rightarrow R be defined as f(x)={(loge x, x gt...

    Text Solution

    |

  11. If the system of equations 2x + 3y – z = 5 x + alpha y + 3z = –4...

    Text Solution

    |

  12. Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2...

    Text Solution

    |

  13. Let y = y(x) be the solution of the differential equation frac{dy}{dx}...

    Text Solution

    |

  14. Let f : R rightarrow R be defined as f(x) = {(frac{a-b cos 2x}{x^2} ,x...

    Text Solution

    |

  15. Let frac{x^2}{a^2}+ frac{y^2}{b^2}=1, a gt b be an ellipse, whose ecc...

    Text Solution

    |

  16. Let 3, a, b, c be in A.P. and 3, a – 1, b +1, c + 9 be in G.P. Then, t...

    Text Solution

    |

  17. Let C : x^2 + y^2 = 4 and C’ : x^2 + y^2- 4 lambda x + 9 = 0 be two ci...

    Text Solution

    |

  18. Given 5f(x)+4f(1/x)=x^2-2 and y=9f(x)x^2. An interval on which y is st...

    Text Solution

    |

  19. If the shortest distance between the lines frac{x - lambda} {-2} = fra...

    Text Solution

    |

  20. If x = x(t) is the solution of the differential equation (t + 1)dx = (...

    Text Solution

    |