Home
Class 12
MATHS
Let vec a = - 5 hat i + hat j - 3 hat k,...

Let `vec a = - 5 hat i + hat j - 3 hat k`, `vec b = hat i + 2 hat j - 4 hat k` and `vec c = (((vec a times vec b) times hat i ) times hat i) times hat i`. Then `vec c.(- hat i + hat j + hat k)` is equal to

A

`-12`

B

`-10`

C

`-13`

D

`-15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{c} \) defined as \( \vec{c} = (((\vec{a} \times \vec{b}) \times \hat{i}) \times \hat{i}) \times \hat{i} \) and then compute \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) \). ### Step 1: Calculate \( \vec{a} \times \vec{b} \) Given: \[ \vec{a} = -5 \hat{i} + \hat{j} - 3 \hat{k} \] \[ \vec{b} = \hat{i} + 2 \hat{j} - 4 \hat{k} \] We can calculate the cross product \( \vec{a} \times \vec{b} \) using the determinant of a matrix: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -5 & 1 & -3 \\ 1 & 2 & -4 \end{vmatrix} \] Calculating this determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & -3 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} -5 & -3 \\ 1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} -5 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & -3 \\ 2 & -4 \end{vmatrix} = (1)(-4) - (-3)(2) = -4 + 6 = 2 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} -5 & -3 \\ 1 & -4 \end{vmatrix} = (-5)(-4) - (-3)(1) = 20 + 3 = 23 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} -5 & 1 \\ 1 & 2 \end{vmatrix} = (-5)(2) - (1)(1) = -10 - 1 = -11 \] Putting it all together: \[ \vec{a} \times \vec{b} = 2 \hat{i} - 23 \hat{j} - 11 \hat{k} \] ### Step 2: Calculate \( \vec{c} = ((\vec{a} \times \vec{b}) \times \hat{i}) \times \hat{i} \) Now we need to calculate \( \vec{c} = ((2 \hat{i} - 23 \hat{j} - 11 \hat{k}) \times \hat{i}) \times \hat{i} \). First, calculate \( \vec{d} = \vec{a} \times \hat{i} \): \[ \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -23 & -11 \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant: \[ \vec{d} = \hat{i} \begin{vmatrix} -23 & -11 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -11 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -23 \\ 1 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. For \( \hat{i} \): \( 0 \) 2. For \( \hat{j} \): \( -2 \) 3. For \( \hat{k} \): \( 23 \) Thus: \[ \vec{d} = 0 \hat{i} + 2 \hat{j} + 23 \hat{k} \] Now calculate \( \vec{c} = \vec{d} \times \hat{i} \): \[ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & 23 \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant: \[ \vec{c} = \hat{i} \begin{vmatrix} 2 & 23 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 23 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. For \( \hat{i} \): \( 0 \) 2. For \( \hat{j} \): \( -23 \) 3. For \( \hat{k} \): \( -2 \) Thus: \[ \vec{c} = 0 \hat{i} + 23 \hat{j} - 2 \hat{k} \] ### Step 3: Calculate \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) \) Now we compute: \[ \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) = (0 \hat{i} + 23 \hat{j} - 2 \hat{k}) \cdot (-\hat{i} + \hat{j} + \hat{k}) \] Calculating the dot product: \[ = 0 \cdot (-1) + 23 \cdot 1 + (-2) \cdot 1 = 0 + 23 - 2 = 21 \] ### Final Answer Thus, \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) = 21 \). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=3 and vec ax vec b= vec c , then vec b is equal to

vec a = (hat i + hat j + hat k), vec a * vec b = 1 and vec a xxvec b = hat j-hat k. Then vec b is

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

If vec a = hat i + hat j, vec b = hat i + hat k, vec c = hat k + hat i, a unit vector parallel to vec a + vec b + vec c

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

If vec a*hat i=4, then the value of vec a*{hat j xx(2hat j-3hat k)} is equal to

vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k,f in d|3vec a-2vec b+4vec c|

If vec a=hat i+2hat j-2hat k,vec b=2hat i-hat j+hat k and vec c=hat i+3hat j-hat k then find vec a xx(vec b xxvec c)

hat i xx(vec a xxhat i)+hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let S={ Z in C : | z - 1|=1 and (sqrt 2 - 1) (z + overline z) - i(z - ...

    Text Solution

    |

  2. Let the median and the mean deviation about the median of 7 observatio...

    Text Solution

    |

  3. Let vec a = - 5 hat i + hat j - 3 hat k, vec b = hat i + 2 hat j - 4 h...

    Text Solution

    |

  4. Let S equiv {x in R : (sqrt 3 + sqrt 2)^x + (sqrt 3 - sqrt 2)^x = 10}....

    Text Solution

    |

  5. The area bounded by xy+4y=16 and x+y=6 is

    Text Solution

    |

  6. Let f :R to R and g : R rightarrow R be defined as f(x)={(loge x, x gt...

    Text Solution

    |

  7. If the system of equations 2x + 3y – z = 5 x + alpha y + 3z = –4...

    Text Solution

    |

  8. Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2...

    Text Solution

    |

  9. Let y = y(x) be the solution of the differential equation frac{dy}{dx}...

    Text Solution

    |

  10. Let f : R rightarrow R be defined as f(x) = {(frac{a-b cos 2x}{x^2} ,x...

    Text Solution

    |

  11. Let frac{x^2}{a^2}+ frac{y^2}{b^2}=1, a gt b be an ellipse, whose ecc...

    Text Solution

    |

  12. Let 3, a, b, c be in A.P. and 3, a – 1, b +1, c + 9 be in G.P. Then, t...

    Text Solution

    |

  13. Let C : x^2 + y^2 = 4 and C’ : x^2 + y^2- 4 lambda x + 9 = 0 be two ci...

    Text Solution

    |

  14. Given 5f(x)+4f(1/x)=x^2-2 and y=9f(x)x^2. An interval on which y is st...

    Text Solution

    |

  15. If the shortest distance between the lines frac{x - lambda} {-2} = fra...

    Text Solution

    |

  16. If x = x(t) is the solution of the differential equation (t + 1)dx = (...

    Text Solution

    |

  17. The number of elements in the set S = {(x, y, z) : x, y, z in Z, x +...

    Text Solution

    |

  18. If the Coefficient of x^30 in the expansion of (1 + frac{1}{x})^6 (1 +...

    Text Solution

    |

  19. Let 3, 7, 11, 15, ...., 403 and 2, 5, 8, 11, . . ., 404 be two arithme...

    Text Solution

    |

  20. Let {x} denote the fractional part of x and f(x) = (cos^(-1) (1-{x}^2)...

    Text Solution

    |