Home
Class 12
MATHS
If the shortest distance between the lin...

If the shortest distance between the lines `frac{x - lambda} {-2}` = `frac{y - 2} {1}`=`frac{z - 1} {1}` and `frac{x - sqrt 3}{1}` = `frac{y-1}{-2}`=`frac{z-2}{1}` is 1, then the sum of all possible values of `lambda` is :

A

0

B

`2 sqrt 3`

C

`3 sqrt 3`

D

`-2 sqrt 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all possible values of \( \lambda \) such that the shortest distance between the two given lines is equal to 1. ### Step 1: Write the equations of the lines in vector form The first line is given by: \[ \frac{x - \lambda}{-2} = \frac{y - 2}{1} = \frac{z - 1}{1} \] This can be expressed in vector form as: \[ \mathbf{R_1} = \begin{pmatrix} \lambda \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \] where \( t \) is a parameter. The second line is given by: \[ \frac{x - \sqrt{3}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} \] This can be expressed in vector form as: \[ \mathbf{R_2} = \begin{pmatrix} \sqrt{3} \\ 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \] where \( s \) is another parameter. ### Step 2: Identify points and direction vectors From the above, we identify: - Point on line 1: \( \mathbf{A_1} = \begin{pmatrix} \lambda \\ 2 \\ 1 \end{pmatrix} \) - Direction vector of line 1: \( \mathbf{B_1} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \) - Point on line 2: \( \mathbf{A_2} = \begin{pmatrix} \sqrt{3} \\ 1 \\ 2 \end{pmatrix} \) - Direction vector of line 2: \( \mathbf{B_2} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \) ### Step 3: Calculate \( \mathbf{A_2} - \mathbf{A_1} \) Now, we calculate the vector \( \mathbf{A_2} - \mathbf{A_1} \): \[ \mathbf{A_2} - \mathbf{A_1} = \begin{pmatrix} \sqrt{3} - \lambda \\ 1 - 2 \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3} - \lambda \\ -1 \\ 1 \end{pmatrix} \] ### Step 4: Calculate \( \mathbf{B_1} \times \mathbf{B_2} \) Next, we compute the cross product \( \mathbf{B_1} \times \mathbf{B_2} \): \[ \mathbf{B_1} \times \mathbf{B_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -2 & 1 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} \] \[ = \mathbf{i} (1 + 2) - \mathbf{j} (-2 - 1) + \mathbf{k} (4 - 1) \] \[ = 3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} = 3\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \] ### Step 5: Calculate the magnitude of \( \mathbf{B_1} \times \mathbf{B_2} \) The magnitude of \( \mathbf{B_1} \times \mathbf{B_2} \) is: \[ |\mathbf{B_1} \times \mathbf{B_2}| = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{27} = 3\sqrt{3} \] ### Step 6: Use the formula for the shortest distance between two skew lines The formula for the shortest distance \( d \) between two skew lines is given by: \[ d = \frac{|(\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2})|}{|\mathbf{B_1} \times \mathbf{B_2}|} \] Substituting the values we have: \[ d = \frac{\left| \begin{pmatrix} \sqrt{3} - \lambda \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \right|}{3\sqrt{3}} \] Calculating the dot product: \[ = \left| 3(\sqrt{3} - \lambda) - 3 + 3 \right| = \left| 3(\sqrt{3} - \lambda) \right| \] Thus, \[ d = \frac{3|\sqrt{3} - \lambda|}{3\sqrt{3}} = \frac{|\sqrt{3} - \lambda|}{\sqrt{3}} \] ### Step 7: Set the distance equal to 1 and solve for \( \lambda \) Setting the distance equal to 1: \[ \frac{|\sqrt{3} - \lambda|}{\sqrt{3}} = 1 \] This implies: \[ |\sqrt{3} - \lambda| = \sqrt{3} \] This gives us two cases: 1. \( \sqrt{3} - \lambda = \sqrt{3} \) → \( \lambda = 0 \) 2. \( \sqrt{3} - \lambda = -\sqrt{3} \) → \( \lambda = 2\sqrt{3} \) ### Step 8: Find the sum of all possible values of \( \lambda \) The possible values of \( \lambda \) are \( 0 \) and \( 2\sqrt{3} \). Therefore, the sum is: \[ 0 + 2\sqrt{3} = 2\sqrt{3} \] ### Final Answer The sum of all possible values of \( \lambda \) is \( 2\sqrt{3} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let O be the origin, and M and N be the points on the lines frac{x-5}{4} = frac{y-4}{1}=frac{z-5}{3} and frac{x+8}{12} = frac{y-2}{5}=frac{z+11}{9} respectively such that MN is the shortest distance between the given lines. Then vec (OM). vec (ON) is equal to _____.

If reflection of A(1, -10, 1) about the line frac{x-1}{2} = frac{y-1}{3}=frac{z-2}{5} is (alpha, beta, gamma) then the |2 alpha 3 beta 5 gamma| is

Add the following: 3frac{1}{13} + 1frac{4}{13} + 2frac{3}{13}

If tan theta= 2 is satisfied by alpha, beta then the value of frac{tan alpha}{2}+ frac{tan beta}{2} = 1 .

If x = sqrt3+ sqrt2, then the value of (x +frac(1)(x)) is

If frac(10x)(3) + frac(5)(2) ( 2 - frac(x)(3)) = frac(7)(2) , then the value of x is

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

If (x+frac(1)(x)): (x-frac(1)(x))=5:4 ,then the value of x is

Determine the term independent of a in the expansion of (frac{a+1}{a^frac{2}{3}-a^frac{1}{3}+1)-frac{a-1}{a-a^frac{1}{2}))^10

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let C : x^2 + y^2 = 4 and C’ : x^2 + y^2- 4 lambda x + 9 = 0 be two ci...

    Text Solution

    |

  2. Given 5f(x)+4f(1/x)=x^2-2 and y=9f(x)x^2. An interval on which y is st...

    Text Solution

    |

  3. If the shortest distance between the lines frac{x - lambda} {-2} = fra...

    Text Solution

    |

  4. If x = x(t) is the solution of the differential equation (t + 1)dx = (...

    Text Solution

    |

  5. The number of elements in the set S = {(x, y, z) : x, y, z in Z, x +...

    Text Solution

    |

  6. If the Coefficient of x^30 in the expansion of (1 + frac{1}{x})^6 (1 +...

    Text Solution

    |

  7. Let 3, 7, 11, 15, ...., 403 and 2, 5, 8, 11, . . ., 404 be two arithme...

    Text Solution

    |

  8. Let {x} denote the fractional part of x and f(x) = (cos^(-1) (1-{x}^2)...

    Text Solution

    |

  9. Let the line L : sqrt(2)x + y =alpha pass through the point of the int...

    Text Solution

    |

  10. Let P = {z in : |z + 2 – 3i | le 1} and Q = {z in C : z (1 + i) + over...

    Text Solution

    |

  11. If int(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 + e^(sin x)) (1 + sin...

    Text Solution

    |

  12. Let the line of the shortest distance between the lines L1 : vec r =...

    Text Solution

    |

  13. Let A= {1, 2, 3, . . 20}. Let R1 and R2 two relation on A such that ...

    Text Solution

    |

  14. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  15. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  16. If the solution y = y(x) of the differential equation (x^4 + 2x^3 + 3x...

    Text Solution

    |

  17. The vertices of a triangle are A(-1, 3), B(-2, 2) and C(3, -1). A new ...

    Text Solution

    |

  18. Three urns A, B and C contain 7 red, 5 black, 5 red, 7 black and 6 red...

    Text Solution

    |

  19. There are 5 points P1, P2, P3, P4, P5 on the side AB, excluding A and ...

    Text Solution

    |

  20. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |