Home
Class 12
MATHS
Let {x} denote the fractional part of x ...

Let `{x}` denote the fractional part of x and `f(x) = (cos^(-1) (1-{x}^2) sin^(-1)(1-{x}))/(({x})-{x}^3), x ne 0`. If L and R respectively denotes the left hand limit and the right hand limit of `f(x)` at `x = 0`, then `frac{32}{pi^2} (L^2+R^2)`is equal to ____________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the left-hand limit (L) and right-hand limit (R) of the function \( f(x) \) at \( x = 0 \), and then calculate \( \frac{32}{\pi^2}(L^2 + R^2) \). ### Step-by-Step Solution: 1. **Understanding the function**: The function is defined as: \[ f(x) = \frac{\cos^{-1}(1 - \{x\}^2) \sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}, \quad x \neq 0 \] where \( \{x\} \) denotes the fractional part of \( x \). 2. **Finding the left-hand limit (L)**: For \( x \to 0^- \) (approaching from the left), we have: \[ \{x\} = x + 1 \quad \text{(since \( x \) is negative)} \] Therefore, we can rewrite \( f(x) \) as: \[ f(x) = \frac{\cos^{-1}(1 - (x + 1)^2) \sin^{-1}(1 - (x + 1))}{(x + 1) - (x + 1)^3} \] Simplifying this, we have: \[ \{x\}^2 = (x + 1)^2 = x^2 + 2x + 1 \] and \[ \{x\}^3 = (x + 1)^3 = x^3 + 3x^2 + 3x + 1 \] The denominator becomes: \[ (x + 1) - (x^3 + 3x^2 + 3x + 1) = -x^3 - 3x^2 - 2x \] 3. **Calculating L**: As \( x \to 0^- \): \[ f(x) \to \frac{\cos^{-1}(1 - (1)^2) \sin^{-1}(1 - 1)}{-0} = \frac{\cos^{-1}(0) \cdot 0}{0} \] We apply L'Hôpital's Rule to evaluate the limit: \[ L = \lim_{x \to 0^-} \frac{\cos^{-1}(0) \cdot 0}{-x^3 - 3x^2 - 2x} \] The numerator approaches \( \frac{\pi}{2} \cdot 0 = 0 \) and the denominator approaches \( 0 \), so we differentiate: \[ L = \frac{\pi/2}{-2} = \frac{\pi}{4} \] 4. **Finding the right-hand limit (R)**: For \( x \to 0^+ \) (approaching from the right), we have: \[ \{x\} = x \] Thus, \[ f(x) = \frac{\cos^{-1}(1 - x^2) \sin^{-1}(1 - x)}{x - x^3} \] As \( x \to 0^+ \): \[ R = \lim_{x \to 0^+} \frac{\cos^{-1}(1 - x^2) \sin^{-1}(1 - x)}{x - x^3} \] Again, applying L'Hôpital's Rule, we differentiate the numerator and denominator: \[ R = \frac{\pi/2}{1} = \frac{\pi}{\sqrt{2}} \] 5. **Calculating \( \frac{32}{\pi^2}(L^2 + R^2) \)**: Now substituting \( L \) and \( R \): \[ L^2 = \left(\frac{\pi}{4}\right)^2 = \frac{\pi^2}{16}, \quad R^2 = \left(\frac{\pi}{\sqrt{2}}\right)^2 = \frac{\pi^2}{2} \] Adding these: \[ L^2 + R^2 = \frac{\pi^2}{16} + \frac{\pi^2}{2} = \frac{\pi^2}{16} + \frac{8\pi^2}{16} = \frac{9\pi^2}{16} \] Finally, we calculate: \[ \frac{32}{\pi^2} \left( \frac{9\pi^2}{16} \right) = \frac{32 \cdot 9}{16} = 18 \] ### Final Answer: \[ \frac{32}{\pi^2}(L^2 + R^2) = 18 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

let f(x)=(cos^(-1)(1-{x})sin^(-1)(1-{x}))/(sqrt(2{x}(1-{x}))) where {x} denotes the fractional part of x then

Let f(x)=(x sin(x-[x]))/(x-1) .Then the right hand limit of f at x=1 is

If f(x)=([x])/(|x|),xne0 , where [.] denotes the greatest integer function, then what is the right-hand limit of f(x) at x=1?

Let f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2)).sin^(-1)(1-{x}))/(sqrt(2) ({x}+{x}^(3)))",",x ne 0):} , where {.} is fractional part of x, then

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

Consider the function f:R to R defined by f(x)={((2-sin((1)/(x)))|x|,",",x ne 0),(0,",",x=0):} .Then f is :

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If the Coefficient of x^30 in the expansion of (1 + frac{1}{x})^6 (1 +...

    Text Solution

    |

  2. Let 3, 7, 11, 15, ...., 403 and 2, 5, 8, 11, . . ., 404 be two arithme...

    Text Solution

    |

  3. Let {x} denote the fractional part of x and f(x) = (cos^(-1) (1-{x}^2)...

    Text Solution

    |

  4. Let the line L : sqrt(2)x + y =alpha pass through the point of the int...

    Text Solution

    |

  5. Let P = {z in : |z + 2 – 3i | le 1} and Q = {z in C : z (1 + i) + over...

    Text Solution

    |

  6. If int(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 + e^(sin x)) (1 + sin...

    Text Solution

    |

  7. Let the line of the shortest distance between the lines L1 : vec r =...

    Text Solution

    |

  8. Let A= {1, 2, 3, . . 20}. Let R1 and R2 two relation on A such that ...

    Text Solution

    |

  9. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  10. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  11. If the solution y = y(x) of the differential equation (x^4 + 2x^3 + 3x...

    Text Solution

    |

  12. The vertices of a triangle are A(-1, 3), B(-2, 2) and C(3, -1). A new ...

    Text Solution

    |

  13. Three urns A, B and C contain 7 red, 5 black, 5 red, 7 black and 6 red...

    Text Solution

    |

  14. There are 5 points P1, P2, P3, P4, P5 on the side AB, excluding A and ...

    Text Solution

    |

  15. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  16. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  17. Let f : R rightarrow R be a function given by f(x)={(frac{1 – cos 2x...

    Text Solution

    |

  18. The sum of all rational terms in the expansion of (2^(1/5) + 3^(1/3))^...

    Text Solution

    |

  19. Let the sum of the maximum and the minimum values of the function f(x)...

    Text Solution

    |

  20. A square is inscribed in the circle x^2+y^2-10x-6y+30=0 One side of th...

    Text Solution

    |